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EXECUTIVE SUMMARY 
 

The worsening problem of aging and deficient infrastructure in this nation and across the world has 

demonstrated the need for an improved system to monitor and maintain these structures. The field of 

structural health monitoring has grown in recent years to address this issue. The goal of this field is to 

continually monitor the condition of a structure to detect and mitigate damage that may occur.  Many 

structural health monitoring methods have been developed and most of these require sensor systems to 

collect the necessary information to assess the current strength and integrity of a structure. The motivation 

for this report is a proposed new microelectromechanical systems (MEMS) sensor with applications in civil 

infrastructure sensing. The work required was to determine accurate estimates of the resonant frequencies 

for a fixed-fixed silicon bridge within the device so that further testing and development could proceed. 

Additional knowledge and information were essential, though, before these requested calculations could be 

performed confidently. First, a thorough review of current structural health monitoring concepts and 

methods was performed to better understand the field in which this device would be applied and what 

incentive existed to develop a new sensor. Second, an in-depth investigation of vibrational beam mechanics 

theories was completed to ensure the accuracy of the frequency results for the new MEMS sensor. This 

report analyzed the influence of three assumptions employed in the Euler-Bernoulli, Rayleigh, and 

Timoshenko beam theories by comparing their results to a three-dimensional, elasticity-based 

approximation for vibrational frequencies and mode shapes. The results of this report showed that all three 

theories are insufficient when a fixed support is involved, so the elasticity-based approximation was utilized 

to calculate the frequencies for the bridge component in the MEMS device. These results have been passed 

on to the developers so that the testing process could move forward in the hopes that the device could 

advance the field of structural health monitoring in the future. 
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1. INTRODUCTION 
 

 

The issue of aging infrastructure in this country has become apparent to the engineering community in 

recent years due to catastrophic failures, such as the collapse of the I-35W Bridge across the Mississippi 

River in Minneapolis, MN, and also from an increasing awareness of the current state of structural health. 

Recent structural surveys have shown more than a quarter of the nation’s bridges to be structurally  

deficient or obsolete and have brought to attention the fact that more than a third have been in service for 

more than 40 years [1, 2]. This data, along with the occurrence of major failures, has demonstrated the 

necessity for methods in which to detect structural damage and properly prioritize the replacement of 

existing bridges and buildings. A notable field which has developed to answer this need is that of structural 

health monitoring. The basic concept behind this field is that by continually tracking the strength and 

integrity of a structure, damage can be detected, the life span can be assessed, and proper maintenance and 

mitigation actions taken. In order to perform most structural health monitoring methods, sensors are 

required to collect data on the key parameters involved in evaluating a structure’s state of strength. 

Numerous devices have been developed and applied for this purpose, but several advancements still need to 

be made before structural health monitoring methods can be prevalently applied in an accurate and cost-

efficient manner. 

 

The motivation behind this report is a proposed new microelectromechanical systems (MEMS) sensor with 

applications in monitoring civil infrastructure, which could help address some of the deficiencies with 

current sensor technologies. A thin fixed-fixed silicon bridge provides the primary sensing element in this 

device. As the sensor is loaded, the resonant frequency of the bridge will change and provide information 

about the component to which it is attached. The key goal of this report was to investigate the properties of 

this bridge by performing calculations for certain modal frequencies, which are needed before further 

development can proceed. Before successfully executing the requested analysis, additional understanding 

was essential. To better comprehend the incentive for the invention and development of a new sensor, a 

review of current structural health monitoring methods and the technologies utilized for them was 

conducted. Also, to ensure more accurate frequency results, an in-depth vibrational mechanics study was 

completed to determine the effectiveness of common beam theories for varying support conditions. The 

remainder of this chapter will layout the objectives of each of these sections, how they were obtained, and 

the organization of the paper. 
 

1.1    Objectives 
 

This study contains three main goals which are all connected but each have their own objectives.  The goal 

that was the impetus for this research was to determine accurate modal frequencies for the silicon bridge 

within the proposed MEMS sensor. The details and methods for this goal will be discussed last because the 

completion of the other two sections of this study was necessary before this goal could be achieved. 

 

The first basic goal for this study was to obtain a greater understanding of the field of structural health 

monitoring through a review of concepts, methods, and sensors. With the knowledge gained from this 

research, the motivation for a new sensor could be recognized and thus provide defense for the relevance of 

the calculations for the new MEMS sensor.  A number of objectives were created to ensure that this study 

of structural health monitoring was successful and adequate information was gained. These objectives are: 

1. Ascertain the primary goals of the practice of structural health monitoring 

2. Identify common methods that have been developed to attain these goals 

3. Explain the concepts behind each of these methods, as well as both the benefits and drawbacks 

associated with their use 

4. Establish what types of sensors are available or in development to collect the necessary data for 

these structural health monitoring methods to be effective 
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5. Describe the theory of operation for these sensors, how they are applicable, and any advantages or 

disadvantages they may possess 

 

The objectives provided were achieved by a process of thorough research of reference books, journal 

articles, academic reports, and more. The topic of this research was at first very broad, covering the basics 

of structural health monitoring, and was continually refined as greater detail of methods and sensors 

became of interest. The amount of information available is immense, so the review created is not 

comprehensive. However, the material found and discussed provided a sufficient knowledge base to move 

forward with the calculations for the suggested new sensor, and possibly provide aid for others who may 

continue the development and research for this and other similar devices. 

 

The second leading goal of this study was to perform a vibrational mechanics study, the results of which 

could be used to ensure the accuracy of the frequency calculations for the MEMS device. This vibration 

study considered three commonly used beam mechanics theories: Euler-Bernoulli, Rayleigh, and 

Timoshenko. These three models increase in complexity, but all contain common assumptions to simplify 

analysis procedures. The purpose of this investigation was to determine how three of these common 

assumptions affect the accuracy of frequency and mode shape calculations.  In order to achieve this, a more 

accurate three-dimensional elasticity approximation was utilized.  The following objectives were conceived 

to carry out this study effectively. 
 

1. Present the theory behind each of the common beam models and the displacement effects which are 

included or ignored in each 

2. Provide a list of the common assumptions included in all three of the discussed beam theories 

3. Explain the three-dimensional elasticity approximation concepts and its development 

4. Investigate the effects of three of the basic assumptions:  high slenderness, isotropic material 

properties, and the idea that the Poisson effect is negligible 

5. Analyze and discuss if and when each of the three common beam theories are applicable based on 

the calculations 

 

A number of steps were taken to accomplish these objectives. First, computational programs, which had 

been provided from previous research, were modified to produce frequency calculations for each of the 

beam theories and the elasticity solution when applied to three different support cases: fixed-free, fixed-

fixed, and simply-supported. Once these were prepared, various calculations were performed to allow for 

the investigation of the three assumptions of interest. Varying beam lengths were employed to study 

slenderness, and two sets of material properties were applied to research the effect of anisotropy. Lastly, the 

more accurate elasticity-based solution was utilized for calculations both with and without the Poisson ratio 

included to better isolate this effect. The conclusions determined about the accuracy of common beam 

theories from this vibrational mechanics study were applied to the calculations performed on the fixed-fixed 

bridge of the MEMS sensor. 

 

The final goal of determining accurate vibrational frequency estimates for the new MEMS sensor was 

possible after the knowledge gained from the previous two goals was applied. The more accurate three- 

dimensional elasticity-based approximation method was employed for the frequency calculations. Accurate 

results were obtained for varying bridge lengths and passed on to the developers of the device. The main 

objective of this section was to provide valuable information to allow for further development and research 

to proceed for this new and promising device. 
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1.2  Report Layout 
 

The information for the three goals of this study has been organized into the four remaining sections. 

Section 2 presents the results of the structural health monitoring review. It covers two categories of possible 

methods, with specific examples for each of them, and which are explained and compared. The types of 

sensors which are available are then explained and discussed. The information provides a thorough 

understanding of the field of structural health monitoring, how it is currently performed, and what 

improvements can be made. 

 

In Section 3, all the concepts and development of the three beam theories to be studied and the proposed 

full elasticity based solution are explained. The mechanics effects, which are included in each of them, are 

presented, and the governing equations that come out of these inclusions are provided and discussed. Each 

of the models are compared and contrasted to understand the limitations and advantages of each of them. 

This chapter also covers the changes necessary for each of the theories to be applicable to the varying 

support conditions that were analyzed. 

 

Section 4 discusses the details of the methods employed for the vibrational mechanics study and the MEMS 

sensor calculations. The results of the study are presented and examined in detail, with final conclusions 

produced and listed. The final frequency calculations for the new MEMS device are also displayed in 

Section 4. 

 

The final section of this report provides concluding remarks. Summarizing statements regarding each of the 

three main goals of this study are produced, and suggestions for further research that could stem from the 

work in this study are proposed. 
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2. REVIEW OF STRUCTURAL HEALTH MONITORING CONCEPTS 
AND PRACTICES 

 

2.1  Introduction 
 

The bridges and buildings that society uses and depends upon daily do not retain their strength and utility 

indefinitely. These structures deteriorate over time as they are continually exposed to harsh environmental 

conditions and continued or increasing loads. The issue of aging infrastructure has gained increasing 

interest over the last decade due to a few catastrophic failures as well as an expanding awareness of current 

infrastructure conditions. In August 2007, the Interstate 35W Bridge across the Mississippi River in 

Minneapolis, MN, suddenly collapsed, killing 13 people and injuring 144 [1]. This bridge was 40 years old 

and had been subjected to increased traffic and environmental loads over its lifetime, causing deterioration 

and ultimately the failure of some under-designed components. The I-35W Bridge is not an entirely unique 

case either. Much of the country’s civil infrastructure is significantly aged and in need of attention.  More 

than 35% of U.S. bridges were built more than 40 years ago [1], and according to the U.S. Department of 

Transportation (USDOT), in 2009, nearly a quarter of the country’s bridges were either structurally 

deficient or structurally obsolete [2]. This growing problem needs to be addressed, and one of the ways 

engineers are doing so is through structural health monitoring. This is the process of tracking the condition 

of a structure over time to determine the nature and extent of damage that may exist and how this affects the 

integrity of the structure. Knowing this information can greatly improve the maintenance process and 

possibly prevent future damage or even collapse of civil infrastructure. 

The field of structural health monitoring has grown significantly in recent years. There has been sub- 

stantial research on the subject and there are continually more projects beginning in this field. The primary 

goal of structural health monitoring is to identify damage in a structure. Within damage identification, four 

different levels exist. The first level determines that damage is present within the structure. The second 

level includes locating the damage, while the third level assesses the extent of this damage. The final level 

uses the information from the first three steps to predict the remaining service life of the structure [3]. The 

following review will focus on methods that deal with the first three steps. There are two main method 

categories that exist in structural health monitoring to address these levels of damage identification. First, 

there are methods used for global monitoring. These methods result in information about the structure as a 

whole and how it responds to loads. The second category is local health monitoring methods. These 

methods are used to monitor local behavior at critical points on the structure. With local methods, the areas 

where damage is most likely must be known ahead of time for the analysis to be relevant. Depending on 

the information an engineer is interested in about a structure, and under which of these two categories that 

falls, there are multiple systems and types of sensors that can be employed to collect the desired 

information. This section will review the basic concepts behind both categories of structural health 

monitoring and the systems that have been considered or utilized to perform the analysis. 
  

2.2    Global Health Monitoring Methods 
 

The basic concept in global health monitoring methods is that the existence of damage will change the 

stiffness, mass, or damping properties of a structure and thus alter the global dynamic properties. The major 

benefit of this type of method is that the location of possible damage does not need to be known before 

installing a system, which is often not possible for complex structures. Methods of global health monitoring 

can be based on a number of different modal properties of a structure. The benefits and challenges to 

techniques based on each of these are discussed below. Also discussed are some methods based on acoustic 

properties of materials rather than modal properties of the structure. 
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2.2.1   Resonant Frequencies 

 

Modal frequencies are one of the most basic vibrational properties of a structure. Every structure possesses 

unique resonant frequencies for each mode of vibration that are related to its mass and stiffness. This basic 

property can be used to detect the occurrence of damage by noting shifts in resonant frequency values. 

Although this is a very appealing concept, there are quite a few limitations that restrict the practical 

application of this method. 
 
Resonant frequencies are a global parameter and do not provide any spatial information about a structure. It 

is evident that methods based on frequency shifts could only be effective at detecting the existence of 

defects and would require the use of an additional analysis technique to locate and assess the severity of any 

damage that may occur. Also, the sensitivity of frequency to damage is relatively low, especially for large 

structures. Significant damage must occur in the structure to cause a detectable change in resonant 

frequency for most measurement systems. A very precise monitoring system could possibly detect shifts 

from minor damage, but it then becomes difficult to separate shifts due to damage from changes caused by 

environmental and operational factors. Significant efforts were put forth to develop a damage detection 

method based on frequency shifts for offshore oil platforms during the 1970s and 1980s, but these were 

abandoned after encountering  issues with machine noise, temperature variations, and changing mass due to 

varying fluid levels and marine growth [4]. It was impossible to separate changes caused by damage from 

all these other factors. Resonant frequencies at higher modes where the modes are associated with local 

responses become more sensitive to minor damage, but it is often unrealistic to excite and determine these 

modes. The one benefit of frequency-based methods over other global methods is that resonant frequencies 

could be found with less uncertainty than other modal parameters [5]. 

 

Many frequency-based health monitoring methods assume that cracking is the only form of damage that 

will occur. This significantly limits application possibilities. In concrete structures, for example, most of the 

stiffness is provided by the concrete and thus damage or deterioration of the reinforcing steel would not 

have a significant effect on the natural frequencies of the structure [6].  Using a frequency-based method 

may be able to detect cracks in the concrete but would miss reinforcement and confinement damage issues. 

Similarly, in steel structures, even a significant amount of corrosion may not have a detectable effect on the 

stiffness and would not cause a noticeable change in frequency. Therefore, frequency-based health 

monitoring methods can be effective in detecting significant damage from cracking, but they are not 

comprehensive, and other methods are needed to adequately monitor the health of a structure. 

 

2.2.2  Mode Shape Vectors 

 
The mode shape vectors associated with each mode of vibration are another basic dynamic property of a 

structure.  These are also related to the mass, stiffness, and damping of a system and are affected when 

damage changes any of these parameters. A major advantage of damage detection methods based on mode 

shape over those based on frequency is the ability to locate the damage that occurs. Mode shape vectors are 

a spatial property and can provide information about both the existence and location of damage. The 

difficulty with this method is that it requires a significant number of measurement locations to accurately 

determine the mode shape and any changes caused by damage. Similar to frequency-based methods, modal 

shape monitoring methods also suffer from low sensitivity issues. Most damage that occurs is a local 

phenomenon and cannot be easily detected by studying the lower frequency mode shapes that are typically 

observed in large structures. In fact, mode shape changes can be even more subtle than frequency changes 

in typical structural response [6].  Mode shapes of higher frequency modes would be more sensitive to 

minor local damage, but as discussed before, these modes are difficult to induce. Mode shape-based 

methods possess most of the same limitations as frequency-based methods. A significant amount of damage 

must occur to be detectable and many types of damage would not have a relevant effect on mode shapes.  
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Overall, mode shape methods have the added benefit of the ability to locate damage, but are still 

insufficient for minor levels of damage and deficiencies other than cracks. 

 

2.2.3   Mode Shape Curvatures 

 
An alternative to using mode shapes to detect damage is to instead consider the mode shape curvature. The 

curvature is found by differentiating the mode shape vector twice. The value of curvature at a point in 

structure is equal to M/EI, so if the stiffness at a point is reduced by damage, the curvature at that point will 

increase. This can be used to both detect and locate damage in a structure, as well as possibly estimating the 

extent of damage by studying the amount of fluctuation in curvature values [7]. Studying the curvature is an 

improvement over using mode shapes because the curvature is far more sensitive to small changes in the 

structure than the mode shape. Thus, minor levels of damage may be able to be detected even in lower 

frequency modes with curvature-based methods. Another advantage is that there exists a direct relationship 

between mode shape curvature and bending strain for beams, plates, and shells. Bending strain has also 

been shown to be far more sensitive to low levels of damage than frequency and mode shape-based 

methods [4]. The greatest drawback of curvature methods is the accuracy. The techniques used for finding 

the second derivatives of the mode shapes can cause false readings of damage when none exist, which 

contaminates the results [8]. Also, it was found that the statistical uncertainty in finding curvature values 

was greater than in determining mode shape vectors or resonant frequencies [4]. Another difficulty with 

curvature-based monitoring methods can occur if there are not baseline data available for a structure. If 

damage is distributed throughout the structure before any data are collected, it may be challenging to detect 

damaged locations without knowing what the curvature values were before damage occurred [6]. Mode 

shape curvature methods are a more realistic option for large civil infrastructure health monitoring in that it 

only requires information from low frequency modes to be effective, but there are still accuracy and 

applicability issues that need to be resolved. 
 
2.2.4  Dynamic Flexibility Matrix 

 
Another method of global monitoring methods is based on differences in the dynamically measured 

flexibility matrix.  The flexibility matrix is the inverse of the stiffness matrix for a structure and thus relates 

applied static force to structural displacement.  The flexibility matrix is calculated from the mass 

normalized mode shapes and frequencies of a structure. Each column of this matrix represents the 

displacement pattern for a certain degree of freedom caused by a unit action applied to that degree of 

freedom. By studying the changes in the dynamic flexibility matrix over time, the existence and location of 

damage can be detected. The degree of freedom that displays the maximum variation in flexibility from the 

undamaged state represents the location of possible damage [7]. One of the main advantages of this method 

is that the flexibility matrix is inversely related to the modal frequencies, which makes it most sensitive to 

the lower-frequency modes that are more dominant in large structures [3]. 

 

There are some drawbacks to using a flexibility matrix method. In most applications only a few of the mode 

shapes will be calculated, which means that the flexibility matrix will only be approximate since its proper 

calculation requires all of the possible mode shapes. Also, this method works best when looking at 

flexibility changes between the completely undamaged state and the current condition. This requires either 

that measurements be taken immediately after construction of a structure or the use of a finite element 

model of the original structure.  In many cases, researchers are interested in studying an already existing 

structure, so initial and undamaged measurements are impossible. Using a model of the original structure is 

a possible solution to this issue, but multiple assumptions usually need to be made to build the model which 

makes the analytical undamaged flexibility values approximate.  Damage detection methods based on the 

dynamic flexibility matrix of a structure are an improvement over frequency and mode shape based  
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methods since they are more sensitive to lower frequencies, but may have accuracy issues due to the 

amount of approximation involved in the analysis. 
 
2.2.5  Updating Modal Parameters 

 

Another method to detect damage in structures involves updating modal property matrices such as mass, 

stiffness, or damping of a structural model to match the measured responses as closely as possible. These 

methods estimate the updated modal matrices through constrained optimization techniques based on 

equations of motion, the structural model, and the measured data [3].  These updated matrices are then 

compared to the original undamaged values to detect and locate damage. These methods are not as common 

as the previously discussed options because a number of problems exist with them.  The original matrices 

for the undamaged case may be inaccurate to begin with and the optimization process does not produce a 

unique solution, so the updated matrices may not be representative of what is actually occurring in the 

structure.  Also, the error minimization operation may cause the stiffness of undamaged elements to change 

which could lead to an abundance of false damage results [6].  Often the degrees of freedom from the 

analytical model matrices do not match the locations of measurement which can severely reduce the 

applicability or effectiveness of these methods [4]. Updating the modal properties of a structure is another 

option to detect damage that may have occurred, but there are significant obstacles to overcome with these 

methods. 
 
2.2.6    Acoustic Properties 

 

Another class of structural health monitoring methods is based on acoustic properties rather than modal 

properties. These methods are based on the measurement of waves propagating through the structural 

material. Some methods are based on how sound waves travel through different material anomalies, but 

these are mostly only employed in local health monitoring and will be discussed in the next section. 

Acoustic monitoring techniques, such as acoustic emission systems, can also measure how stress waves 

radiate through a structure.  The basic concept behind acoustic emission methods is that stress waves are 

produced by a sudden release of energy due to micro-cracking occurring in the material. These stress waves 

can be picked up by acoustic emission sensors to detect cracking and even locate it through triangulation 

with multiple sensors [9]. A significant advantage to this type of global health monitoring is that it has the 

ability to detect damage events as they occur rather than after some analysis of the data. This can present a 

complication as well. This method is only applicable if data are being collected continuously, otherwise the 

stress emissions may be missed entirely. Continuous data collection may not be possible or cost effective in 

many cases. Some other drawbacks of this method are that  the waves emitted by the micro-cracking can be 

very weak and difficult to detect over background noise and determining what type of damage has occurred 

is challenging [10].  Acoustic emission monitoring methods are a popular option because they can 

theoretically detect damage anywhere in a structure as it is happening. This could have significant 

applications in early warning systems that aim to shut down or evacuate structures if damage is indicating 

possible catastrophic failure.
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2.3 Local Health Monitoring Methods 
 

Once potential damage locations are determined from global monitoring methods, or if critical areas are 

initially known, local health monitoring methods are performed to assess the extent of damage and keep 

track of any damage progression. There are numerous techniques for performing local damage detection 

and assessment, but they all center on a few basic concepts. The properties measured and concepts 

employed in local health monitoring methods are discussed in this section. 

 

2.3.1 Visual 

 

Probably the most common type of local health monitoring practiced is visual inspection. This extremely 

simplistic method identifies damage in a structure simply by looking at it with the hope of recognizing 

changes and abnormalities. These methods are used very often, primarily due to the biannual bridge 

inspections mandated by the National Bridge Inspection Program enacted in 1967 [11]. This program 

requires current information on the nearly 600,000 bridges across the United States, and the adopted 

procedure for completing this requirement is visual inspection. These traditional techniques require 

immense amounts of time, closure of a bridge in many cases, and a great deal of manpower and other costs. 

Visual inspections also depend highly on the decisions and opinions of the inspector and can lead to large 

variations and subjectivity in the results. Furthermore, only outward appearance of a structure can be 

assessed, so even major internal damage could be missed for years [10]. Therefore, although this is still a 

popularly used method, it has multiple flaws, and more objective and comprehensive methods are needed to 

safely assess the current health of structures. 
 
2.3.2  Strains or Displacements 

 

Monitoring and assessing damage through either strains or displacements provide another favored option. 

As a structure is loaded and stressed, the material goes through strains and deflections in response, and if 

these strains or deflections exceed certain values, damage can be assumed. This type of method is typically 

used for predicted critical locations of a structure such as a connection or a potential weak spot that has 

been detected by a global detection method. Another monitoring application utilizing strain or displacement 

measurements is to watch an already known defect, such as a crack, to determine if the damage is 

worsening. Another parameter similar to displacement that may be monitored is the tilt or slope of a 

member. This is typically used to study pier behavior [10]. As environmental or loading conditions change, 

the angle of a bridge support may change, which could indicate weakness or failure. The primary problem 

with these methods is how localized their measurement capabilities are. Often strain is only measured over 

a few inches or less, and displacement and tilt are only recorded at one point on the structure. In general, 

though, monitoring methods based on strains or displacements are effective and commonly used. 

 

2.3.3 Stresses or Loads 

 

Another concept used in local health monitoring measures the stress or load that a part of the structure 

experiences. In relation to local health monitoring, if the stress or load occurring in a certain location is 

beyond a certain level, damage may be likely. Conversely, if the stress or load measurement decreases 

significantly or rapidly, it may be a signal that damage has occurred and the structure can no longer 

withstand the load it was previously supporting. These methods are utilized much less often because 

stresses or loads are substantially more difficult to directly measure than strain or displacement. 
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2.3.4    Acoustic Properties 

  

Local health monitoring methods may also use acoustic properties to detect or measure damage. A few 

methods consider the propagation of sound waves through the material. The reflection of sound waves will 

change if anomalies such as air voids exist in the material. This principle is the basis for both chain 

dragging and tap tests. Chain dragging is used to determine bridge deck health and is a widely used and 

accepted local monitoring method. Tap tests are typically used to detect delamination between fiber 

reinforced polymer (FRP) sheets and concrete. Both of these methods possess subjectivity problems since 

the results depend on the inspector who is listening to the response. Two different inspectors can find 

entirely different conclusions. Another disadvantage with these two techniques comes from access 

concerns. With chain dragging, complete bridge closure is often required [10] and reaching testing 

locations for tap tests may be unsafe or impossible. 

 

Another acoustic-based method employs the concept that stress wave propagation from a force is affected 

directly by mechanical properties [9]. This type of method, referred to as impact echo, involves applying a 

minor impact force to a structure and listening to its response. Based on the frequency of the wave response 

delaminations, voids, and cracks can be detected, as well as the depth at which they exist. This method has 

been found to be highly accurate, which is a significant advantage. A main disadvantage to this method is 

that many locations need to be tested in order to obtain a comprehensive understanding of the defects that 

may exist. Also, when applied to bridges, this technique requires that no traffic is present during testing, so 

lane closures are necessary [10]. 

  

2.4  Sensors Used in Structural Health Monitoring 
 

All the health monitoring methods discussed require data values from the structure of interest to perform 

analysis and determine if any damage has occurred or if damage is probable. Although a few of the 

methods presented only require data from visual or manual inspection, these types of data are tedious and 

costly to obtain. Because of this issue, most research in the area of structural health monitoring has focused 

on the use of sensor systems to collect the necessary information for analysis. Two main types of quantities 

are typically measured with structural sensors: kinematic and environmental [12]. Environmental metrics 

such as temperature and humidity are commonly monitored to isolate the response of structure due to 

loading from these effects. Usually, the values of primary interest are of the kinematic type such as strain, 

displacement, and force. Therefore, the remainder of this section will focus on sensors that measure only 

kinematic quantities while realizing that these sensors would need to be combined with environmental data 

to properly analyze the state of a structure. 

 

A multitude of different sensors have been developed and discussed for the use of structural health 

monitoring, the descriptions of which would at least fill an entire book. The following sections will  present 

the most commonly used sensors that have been well established and tested, as well as some very 

promising recently developed sensor technologies, but this list is by no means a comprehensive 

presentation of available sensor technologies. Sensors that measure the dynamic vibrational properties 

required for global health monitoring will be presented first, then local kinematic sensors, and concluding 

with recent developments in the field of health monitoring sensors. 

 

2.4.1  Accelerometers 

 

Accelerometers measure the acceleration a particular location of a structure is experiencing due to either 

gravity or applied loads. Different versions of accelerometers have been used as measuring devices for 

many years because acceleration data can provide valuable information about the dynamic characteristics of 

a structure. Through post processing procedures, acceleration measurements can be used to calculate 
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frequency, damping, and mode shapes of a structure [11]. As discussed previously, these vibrational 

properties are useful in global health monitoring methods. Although accelerometers have long been 

employed for monitoring techniques, issues still exist with error development during the numerical 

integration of the data [13]. These devices also output a great deal of data, which can require intensive 

processing. Even with these challenges, accelerometers provide the best option for measuring dynamic 

properties of a structure. Four different types of accelerometers are commonly used and each have their 

own advantages and drawbacks, which will be discussed in the following paragraphs. 

 

Piezoelectric Accelerometers 
 

The most popular type of accelerometer of the four common options is the piezoelectric accelerometer. 

These sensors have many advantages, including small size, high output, durability, wide frequency range, 

and the ability to monitor a wide range of dynamic events [14, 11]. The basic components of a piezoelectric 

accelerometer are the base, a piezoelectric element, and a seismic mass. A basic setup for this type of 

sensor is shown in Figure 2.1. The piezoelectric elements in these sensors are the key components in the 

operation of the sensor. Piezoelectric materials have the unique property that they output an electrical signal 

proportional to the stress applied to the material [14]. As an acceleration is applied to the base of the sensor, 

the piezoelectric elements experience a force proportional to the mass they are connected to and thus to the 

acceleration being experienced. This force creates an electrical output that can be sent through a cable to a 

data acquisition system where it can be processed further. A significant advantage to these types of sensors 

is that they are self-generating. The piezoelectric material outputs an electrical signal without the need of a 

constant input electrical or power source [14]. When this type of accelerometer was originally invented, it 

required special low-noise cabling because the original signal from the piezoelectric material is susceptible 

to corruption from environmental effects and cable-generated noise [14]. Today, these accelerometers 

usually include electronics within the sensor that covert the signal so that it can be transmitted over long 

cable distances without any loss in quality [11]. The only downside to this addition is that it somewhat 

limits the temperature range in which the sensors can be used, but they still operate up to 350º F [14]. 

 

 
Figure 2.1  Basic Configuration of a Piezoelectric Accelerometer [14] 

 
There are a few different options available with piezoelectric accelerometers. Two types of piezoelectric 

materials exist that can be utilized in these sensors: quartz or polycrystalline ceramics. Quartz is a natural 

material that is inherently piezoelectric and is therefore considered more stable than other material options 

and provides a better option for long-term accelerometers. Quartz is also immune to the pyroelectric effect, 

so the output is not affected by temperature change. One drawback to quartz is that it has low charge 

sensitivity, which limits its use in certain systems. Polycrystalline ceramics are man-made and forced to 

become piezoelectric through the process of poling. If these materials are exposed to drastic temperature 

changes or large electric fields, their properties can be significantly altered, which is their biggest 

disadvantage. Polycrystalline ceramics provide the benefit of being easily adapted to different properties, 

unlike quartz. The ceramics can be created to have high charge sensitivity or to withstand extremely high 

temperatures [14]. Both types of material have their usefulness, it simply depends on the application the 
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sensor will be used for. Three different structures of piezoelectric accelerometers are also available. The 

structure options are based upon the type of stress applied to the piezoelectric material in the sensor. The 

options are shear mode, flexural mode, and compression mode. Diagrams of each of these structure types 

are shown in Figure 2.2. The shear mode assembly allows for very small size, which is useful for high-

frequency response. Flexural mode accelerometers are best for low-frequency and low-gravitational 

accelerations and are not sensitive to transverse motion. The last option, compression mode, is very rugged 

and can withstand high shock levels but can be more sensitive to thermal and strain effects since the 

piezoelectric material is in contact with the base [14]. 

 

 
 

(a) Shear Mode  (b) Flexural  Mode  (c) Compression Mode 

Figure 2.2  Structure Types for Piezoelectric Accelerometers [15] 

 

Piezoresistive Accelerometers 
 

Another common accelerometer type utilizes piezoresistive strain gages. These strain gages use 

resistors made of single-crystal silicon. The electrical resistance of this material changes in 

proportion to the stress or force applied to it [11]. The common structure of piezoresistive 

accelerometers involves these strain gages attached to a cantilever bridge with a seismic mass 

attached. As the sensor experiences acceleration, the strain gages are stressed in flexure, which 

alters the electrical signal output by a Wheatstone bridge circuit.  The main advantage to this type 

of accelerometer is that it can be produced in a very small size, which makes them useful in 

MEMS systems, which will be discussed in Section 2.4.7 [14]. Piezoresistive accelerometers also 

provide very low frequency response capabilities, which is another significant advantage. The 

main drawback to this sensor type is that it has a smaller dynamic range of measurement and 

requires a constant electrical input for the Wheatstone bridge circuit. 

 

Capacitance Accelerometers 
 

Capacitance accelerometers are very similar to piezoresistive accelerometers, since they measure 

an electrical change across a bridge, but these sensors measure a change in capacitance rather than 

resistance [14]. These accelerometers have very high resolution and can measure accelerations 

from the level of micro-g up to 100s of g, which is better than the resolution available from 

piezoresistive accelerometers [11]. Some disadvantages include a limited high-frequency range 

and a higher noise level than typical piezoelectric accelerometers. 

 
Servo Force Balance Acclerometers 
 

The last type of acclerometer that can commonly be found is the servo force balance type. The operation of 

these accelerometers differs greatly from the other three options discussed. All three previous sensor types 

measure the deflection of a seismic mass, which is proportional to acceleration, directly through different 
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electrical principles. Servo accelerometers instead keep the movement of an internal capacitor plate to a 

minimum by using electromagnetic forces to keep the mass in a neutral position. The required 

electromagnetic force necessary is proportional to the acceleration experienced [14]. The operation of this 

sensor occurs rapidly enough that there is virtually no relative movement between the plate and the supports, 

which reduces the effects of nonlinearities that can occur with the other three sensor types [11]. This type of 

accelerometer is far more accurate than the other three with measurement capabilities on the level of  

milli-g. The primary disadvantage to this option is the cost, which can be up to 10 times greater than other 

accelerometers. A figure of the basic principle behind servo force balance accelerometers is provided in 

Figure 2.3. 

 
Figure 2.3  Diagram of Servo Force Balance Accelerometer Operation Principle [11] 

 

 

2.4.2  Strain Gages 
 

Strain gages are commonly used in the practice of structural health monitoring for a number of reasons. The 

greatest advantage of these sensors is that they are inexpensive and easy to install [16]. Although strain 

gages can only measure the strain of a structure at one location, the information gained from these sensors 

can be used in combination with a finite element model of the structure to help detect when damage may 

have occurred [17]. The use of strain gages in this type of method are based upon the principle that damage 

to a critical location will lead to a change in load path and thus a detectable difference in strain distribution 

[18]. The use of strain gages in structural health monitoring in this way is often because thorough research 

has been performed involving the interpretation of strain data, and this process is well understood [16].  

Many varieties of strain gages exist, but two types are most commonly utilized in structural health 

monitoring methods and will be presented in the following paragraphs. 

 

Electrical Resistance Strain Gages 
 

Bonded foil resistance strain gages, also known as electrical resistance strain gages, are the most commonly 

used type of strain gage [11]. The principle behind these sensors is the fact that the electrical resistance of a 

conducting material is proportional to the length and inversely proportional to the cross-sectional area [19]. 

These strain gages consist of a metallic foil, usually arranged in a pattern to increase the length of the 

conductor, attached to a nonconducting film, which is then connected to the structure of interest with an 

epoxy. A diagram of this basic setup is shown in Figure 2.4. With this setup, the strain gage will deform 

with the member, and as the foil in the gage is stressed, the length and cross-sectional area will change, 

leading to a change in electrical resistance that can be measured [19]. The relationship between the change 

in electrical resistance and the change in length of the foil is known as the gage factor, which is unique to 

each sensor. With this factor, as well as basic constitutive laws, the relationship between strain and 

resistance can be determined. Because electrical resistance is also altered by changing temperatures, a 
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temperature control strain gage is commonly used, along with the gage attached to the structure, to isolate 

the strain due to kinematic loading. 
 
 

 
 

Figure 2.4  Basic Configuration of an Electrical Resistance Strain Gage [20] 

 

Electrical resistance strain gages have a number of advantages and possible applications. These sensors can 

be employed on any structure material including steel, concrete, and composites. When applied to concrete 

members, the gage length tends to be longer to better average out the localized strain values due to 

discontinuities in the material, but this is a simple adjustment. Many other types of sensors, such as load 

cells, accelerometers, and more, also utilize electrical resistance strain gages within their setup, so these 

gages can be applied for more than just measuring local strain values [11]. Another advantage to electrical 

resistance strain gages is that they have been found to agree well with other types of strain gages in short-

term monitoring situations [21, 22]. These sensors can also be used to determine principle strains when a 

strain gage rosette is employed [23]. Generally this type of strain gage is only used for short duration 

measurements, such as the strains caused by traffic loads, because they lose their accuracy over time due to 

their susceptibility to adverse effects from exposure to the elements. A few other issues exist with electrical 

strain gages besides their loss of accuracy over time. These sensors are ideally only sensitive to strain in the 

longitudinal direction of the gage, but they can be affected by transverse movement as well, which can 

reduce the accuracy [11]. They also require a constant power source to be operated and are more susceptible 

to noise effects than other types of strain gages. Even with these drawbacks, electrical resistance strain gages 

remain the most common option when using strain measurements in structural health monitoring. 

 

Vibrating Wire Strain Gages 
 

Vibrating wire strain gages are the other popular option for strain measurements. These sensors are known 

to provide excellent performance and long-term durability and can be installed externally on steel or 

concrete or embedded within a concrete member [11]. These sensors include a pretensioned steel wire that 

is fixed at both supports and an electromagnetic coil which is used to excite the wire and read its natural 

frequency. The wire is encased within a steel tube that can be applied to the desired member at each end. A 

diagram of the basic setup for this type of sensor is given in Figure 2.5 and a photograph of an external 

application option of this strain gage type is shown in Figure 2.6. This type of strain gage works by 

comparing the change in frequency of the pretensioned wire as the length of the wire changes to determine 

the strain experienced [24]. These strain gages have been shown to very stable over long periods of time, 

which makes them applicable for continuous measurement of slowly changing strains unlike electrical 

resistance strain gages [25]. The main disadvantages to this sensor option are that they are not applicable 

for measuring dynamic strains and there is the possibility for unequal strains to develop in the gage than in 

the member due to differences in thermal expansion [22]. Overall, these strain gages provide a reliable 

option for long-term strain measurements in structural health monitoring. 
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Figure 2.5  Schematic Diagram of the Operation 

 of a Vibrating Wire Strain Gage [11] 

 

 
Figure 2.6  External Application Vibrating           

Wire Strain Gage Model [26] 

 

  
2.4.3 Displacement Sensors 

 

Displacement is another measurement parameter that is often of interest in the practice of structural health 

monitoring. Monitoring of displacements is commonly used to assess critical locations, such as across an 

expansion joint or over the length of a suspension cable in a bridge [10]. The two most common sensors 

utilized to measure displacement are linear potentiometers and linear variable differential transformers 

(LVDTs). The details of each of these are presented in the following paragraphs. 

 

Linear Potentiometers 

 

Linear potentiometers, also known as cable extension transducers, are composed of a spool with a length of 

stainless steel cable wound on it, a tension spring that keeps the spool loaded so that either direction of 

displacement can be measured, and a precision potentiometer. Usually, the main housing of the sensor is 

attached to a fixed location, with the end of the cable connected to the member or component whose 

displacement is being monitored. As the location of interest displaces, the cable extends from or retracts 

onto the spool, which rotates. The rotation of the spool moves the potentiometer. A potentiometer consists 

of a thin film resonator with a movable wiper, which is in contact with the electrical resistor. As the wiper 

moves across the resonator due to the rotation of the cable spool, a change in electrical resistance occurs, 

which is proportional to the displacement of the cable [11]. A diagram of the basic operation for an angular 

potentiometer is shown in Figure 2.7. The benefits of this type of displacement sensor include low cost, 

ability to measure large displacements, simplicity in operation, ease of installation, and higher accuracy and 

measurement range than LVDT sensors [11, 27].  Linear potentiometers also have some disadvantages in 

comparison with other displacement sensors in that they are not applicable for dynamic measurements or 

long- term continuous measurement due to temperature-related drift issues, and they are subject to wear 

problems over time because of the contact between the potentiometer wiper and resonator [11]. These 

displacement sensors still remain a positive option for accurate displacement measurements, especially if 

the expected displacements are large. 

 

Linear Variable Differential Transformers (LVDTs) 

 

Linear variable differential transformers (LVDTs) offer another common displacement sensor option. 

LVDT sensors are based upon the principle of mutual inductance. These devices consist of a hollow 

metallic cylinder containing a primary and two secondary electrical coils and a movable magnetic core. A 

diagram of this setup is provided in Figure 2.8. For the operation of this sensor, a voltage is applied to the 
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Figure 2.7  Schematic of Angular Potentiometer Operation [11] 

 

primary central coil, which induces voltage in each of the secondary coils. These induced voltages are 

linearly related to the position of the magnetic core, which is attached to the member whose displacement is 

of interest [28]. As the magnetic core moves, the changing voltages in the secondary coils are converted to 

the amount of displacement [11]. LVDT sensors are generally more expensive than other displacement 

options, but they provide significant advantages. This type  of sensor is capable of measuring dynamic 

displacements, can measure less than a nanometer of displacement, are suitable for use in very low 

temperatures with minimal loss in accuracy, and they also are virtually  immune to wear damage  because 

the moving magnetic core makes no physical contact with the electrical coils [11, 29, 28]. LVDT 

displacement sensors can be costly, but are applicable in many situations where linear potentiometers 

cannot be utilized. 

 

 
Figure 2.8  Linear Variable Differential Transformer Internal Composition Diagram [11] 

 

 

2.4.4  Tiltmeters and Inclinometers 

 

As mentioned previously, another metric that may be of interest in structural health monitoring is the slope 

or tilt of a particular location. Tiltmeters and inclinometers are the sensors utilized to measure this 

parameter. Three different options are available for tiltmeters, each with their own benefits. These will be 

compared in the following paragraphs. 
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Vibrating Wire Tiltmeters 

 

Vibrating wire tiltmeters are composed of a pendulous mass, which is supported by a vibrating wire strain 

gage. As the sensor tilts, the gravitational force from the mass upon the strain gage will change due to this 

rotation.  The frequency of the wire within the strain gage will shift because of this, and the relationship 

between this frequency and the angle of rotation can be determined. These sensors are designed for 

permanent measurements and are not applicable for dynamic slope changes, such as those due to traffic 

loads or an earthquake [11]. 

 

Electrolytic Tiltmeters 

 

Electrolytic tiltmeters utilize a high-precision electrolytic tilt transducer and the primary sensing element. 

These devices are excited by an AC signal through the tilt transducer, and as the transducer tilts, internal 

electrodes are covered or uncovered by a conductive fluid within the device. As these electrodes are 

exposed or removed from the conductive fluid, the electrical resistance to the excitation signal is altered, 

which can be converted to a change in angle through a scaling factor. The primary benefit to this sensor 

type is that the angular movement of the sensor, and thus the member it is measuring, is compared to the 

gravity vector and therefore no external datum is necessary for operation. These sensors, again, are best for 

long-term angular changes rather than rapidly changing tilts [11]. 

 

Inertial-Based Inclinometers 

 

Inertial based inclinometers are the main option for measuring dynamic tilt changes. The technology in 

these devices is similar to that of a servo force balance accelerometer. These inclinometers also contain a 

pendulous mass, and the motion of this mass is detected by an optical position sensor. The reading from 

this position sensor is compared with the original state, and a balancing current is produced and applied to a 

torque motor to return the mass to the original state. This basic operation is portrayed in a diagram in 

Figure 2.9. The balancing current required to keep the mass in the initial position is proportional to the tilt 

experienced by the sensor. These inclinometers are very accurate, with the ability to record changes in 

slope as minute as 0.1 seconds of a degree and are applicable where high levels of shock and vibration 

occur [11]. 
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Figure 2.9  Diagram of the Operation of an Inertial Based Inclinometer [30] 
 

 
2.4.5  Acoustic Emission Sensors 

 
The most common type of acoustic emission sensor uses piezoelectric materials similar to the operation of 

a piezoelectric accelerometer. This type of sensor has been proven to be more durable and sensitive than 

other techniques based upon capacitance or laser-optics [31]. The piezoelectric material within the sensor 

experiences the force from the stress waves propagating from a crack and outputs a proportional electrical 

signal. A basic diagram of an acoustic emission sensor is shown in Figure 2.10. In order for these sensors to 

be applicable, they are typically used within a network of multiple sensors so that triangulation can be 

performed to determine the location of a stress wave source [11]. The best advantages of acoustic emission 

sensors is the ability to detect damage as it occurs and because the damage does not need to occur at the site 

of the sensor for it to be detected. Steel is the best material for the use of acoustic emission sensors because 

the stress waves do not attenuate as drastically and can be detected at farther distances [10]. 

 

 
Figure 2.10  Diagram of an Acoustic Emission Sensor [31] 
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2.4.6  Fiber Optic Sensors 

 

Fiber optic sensors are a relatively new technology that have a lot of promising applications. The basic 

operation of these sensors involves sending light beams down a fiber optic cable at regular intervals and 

measuring the changes that occur as this light is reflected [12]. Four different principles are commonly used 

to interpret these changes in light signals: interferometry, polarization, spectroscopy, and light intensity 

[32]. Interferometry-based fiber optic sensors monitor changes in the shape of light waves to measure 

environmental changes. When the principle of polarization is employed, the changes in optical polarization 

of a light signal are the measure of interest [33]. One of the most common types of fiber optic sensor types 

is a fiber Bragg grating (FBG) sensor, which is based on the principle of spectroscopy. Spectrally based 

sensors like FBG sensors monitor the change in wavelength of reflected light sources. Sensors using the 

principle of light intensity to measure how light intensity changes over the length of a fiber [10]. 

 

There are a large number of advantages to the use of fiber optic sensors, which has fueled the amount of 

research behind these devices. The most significant benefit to the use of fiber optics is the ability to 

measure multiple parameters with only one fiber because of the variety of principles that can be employed 

[11, 10, 12].  Another notable advantage over other types of sensors is the capability to measure changes 

along the entire length of a fiber rather than just at one particular location. Fiber optic sensors are also 

immune to electromagnetic interference, which is a common problem with many other sensor options. 

 
Fiber optic technology can be easily incorporated into other devices such as accelerometers and electrical 

transducers and have been used to measure a variety of metrics, including strain, displacement,  pressure, 

slope, acceleration, corrosion, loading, and cracking in concrete [32, 34]. Fiber optic strain gages that have 

been developed have shown the ability to detect strains with several orders of magnitude improvement over 

common electrical resistance strain gages and are immune to any transverse effects that often affects other 

strain gages [11, 12]. Two models of fiber optic strain gages are common: FBG sensors and extrinsic Fabry-

Perot interferometric (EFPI) sensors.  FBG sensors detect how the wavelength of reflected light changes 

due to applied loads. These sensors can be very small because the light changes are measured over a pattern 

written on the optical fiber which can be as short as needed. Fiber Bragg-based strain gages are less 

expensive than EFPI sensors but are not as accurate. In EFPI gages, the sensing element is not the optical 

fiber itself; instead, it consists of two mirrors placed such that the tips of optical fibers and the wavelength 

of reflected light between them is a function of the distance. EFPI strain gages are the most sensitive option 

but are also the most expensive [11]. The leading drawback to the use of fiber optic sensors comes from this 

higher cost, which has been a major obstacle in their process of becoming commonly utilized [11]. Further 

research and development are constantly being conducted in the field of fiber optic sensors for structural 

health monitoring to discover new applications and increase the affordability so that their distinct 

advantages may be more available in the future. 

 

2.4.7   Microelectromechanical Systems (MEMS) Sensors 

 
Sensors utilizing microelectromechanical systems (MEMS) are another recent technology development in 

the field of structural health monitoring. One of the significant advantages of MEMS sensors is the ability 

to both sense and actuate. This means that within the same device, data can be collected and partially 

processed before being transmitted. This is usually done by including an on-board microprocessor within  

the sensor system that can be used to convert the signal to digital, perform basic calculations, or provide 

interfacing functions, which can greatly reduce the amount of data processing required [12]. MEMS sensors 

also have the benefit of miniature size, so they are applicable in situations where typical sensors are too 

large. The common manufacturing process for MEMS devices also presents the possibility of large scale 
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productions with relatively low cost [35]. One application found in research is a MEMS-based transducer to 

be used for acoustic emission detection.  This type of acoustic emission sensor could include multiple 

transducers, each with a narrow and highly sensitive resonant frequency, which together still cover the 

frequency range of interest. This could help the process of differentiating environmental noise from actual 

stress waves caused by acoustic emission events and greatly improve the accuracy overall [35]. MEMS-

based strain sensors have also been developed using piezoresistive principles that could improve resolution 

and sensitivity as well as consume less energy than common strain gages [36]. 

 

MEMS sensors also have a great deal of potential for use outside of structural health monitoring.  One of 

the promising applications is the use of MEMS sensors in microbiology. MEMS sensors have been shown 

to be ideal for measurement of force and displacement on the single-cell level with the ability to study a 

large population of cells at one time [37]. This ability has been utilized in tests to recognize and remove 

cervical cancer cells from a mixed cell population.  The hope is for these sensors to be a diagnostic tool 

because they can process a large population rapidly with low cost [38]. A potential new MEMS-based 

sensor with possible applications in both structural health monitoring and microbiology is being developed; 

and preliminary calculations and investigations for this device are discussed in Section 4. 

 

2.5 Summarizing Remarks 
 

The field of structural health monitoring has grown significantly over the last few decades. The aging 

infrastructure in the United States and around the world, as well as rapidly improving technologies, have 

helped this growth. Multiple methods have been investigated and tested to assess the overall state of a 

structure through global health monitoring as well as concepts to determine if issues are present on a more 

local level. Numerous varieties of sensors and devices have also been developed to accurately gain the data 

required for global and local assessment practices, with some very successful and applicable options 

available. Even with all this progress, there still exists considerable issues and complications with many of 

the methods and technologies that have been developed. Although an increasing number of bridges and 

other structures are being studied through structural health monitoring concepts, much more research and 

development need to be performed before measurement and investigation through these methods can be 

feasible for all structures. The goal to continually improve the accuracy, applicability, and cost 

effectiveness of structural health monitoring is the impetus behind the development of the MEMS device 

investigated in Section 4 and many similar current projects and ideas for the future. Through all this 

continued research, the achievement of monitoring all bridges and structures may someday be met so that 

tragedies such as the I-35W bridge collapse will never occur again. 
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3. THEORY OF BEAM VIBRATION 
 

3.1  Introduction 
 

The vibrating beam is a well-studied mechanics problem with a multitude of practical applications in 

engineering. Problems involving a vibrating beam are typically approached using one of the common beam 

theories, which were all introduced by 1921 [39] and have been thoroughly studied. The three most 

typically used beam theories are the Euler-Bernoulli, Rayleigh, and Timoshenko theories. While for many 

engineering applications, the use of one of these theories provides reasonable results, all three of them still 

rely upon a few basic assumptions. These assumptions take fully three-dimensional elasticity theory and 

simplify it to an approximate one-dimensional theory. A main component missing from the collection of 

research on the vibrating beam is an investigation into when these assumptions begin to fall apart. In order 

to confidently utilize these beam theories, their limitations should be well understood. In this section, a 

fourth method to analyze vibrational beam mechanics is introduced that better approximates a fully three-

dimensional elasticity theory. This approach will be employed to study the accuracy of the common beam 

theories and the point at which they fail to be acceptable analysis tools. When studying the effectiveness of 

common beam theories, three different boundary condition cases will be evaluated: fixed-free, fixed-fixed, 

and simply-supported. The following sections will discuss the concepts applied in each theory and the 

development of equations of motion and boundary conditions for each. Frequency equations for each of the 

proposed end condition cases will also be introduced and explained. 

  

3.2  Basic Beam Theories in Mechanics 
 
3.2.1 Euler-Bernoulli Beam Theory 
 

The Euler-Bernoulli beam theory (also known as the classical beam theory, Euler beam theory, Bernoulli 

beam theory, or Bernoulli-Euler beam theory), is the most commonly used theory. The early development 

of this theory can be traced back to the early 18th century.  Two different Bernoulli’s contributed to this 

model, but it began with Jacob Bernoulli (1654-1705). Jacob was the first to use infinitesimal calculus to 

study the deflection curve of an elastic bar. He developed an equation that described a proportional 

relationship between the bending moment at a certain point in a beam and the curvature at that location 

[40]. Although the constants he found in this equation were later found to be incorrect, the basic principle 

was true and later used by Euler. Leonard Euler (1707-1783) made significant advancements to 

mathematics and mechanics of materials, and he happened to be the pupil of another Bernoulli, Jacob’s 

nephew, Daniel. Daniel Bernoulli (1700-1782) contributed to this theory in two ways. He was the first to 

derive the differential equation that governs the lateral vibrations of a prismatic bar. He also made a crucial 

suggestion that Euler use variational calculus in deriving equations for the deflection curves of elastic 

beams. Euler took this suggestion, and also adopted Jacob Bernoulli’s principle, when he expanded the 

study of beam mechanics. Euler showed how differential equations of motion could be derived and how the 

motion of a particle could be found by integrating these equations. He used these principles to establish 

formulae for the frequencies and mode shapes of beams with varying end conditions [40]. The final 

equations and principles described in Euler’s work contrive the final form of the Euler-Bernoulli beam 

model. 

 

This beam model is the most commonly used theory because it is very simple and provides acceptable 

results for many engineering problems. This theory includes both the strain energy from bending and the 

kinetic energy from transverse displacement but does not consider the effects of rotary inertia or shear 
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displacement. Due to ignoring these two contributions, this model tends to overestimate the natural 

frequencies of a vibrating beam, especially for higher modes of vibration [39]. The Euler-Bernoulli model 

also lacks accuracy as the beam becomes less slender. When analyzing low modes of vibration for slender 

beams, the contributions from rotary inertia and the effect of shear are negligible, but this does not describe 

many engineering problems. Therefore, more advanced beam models have been developed to improve the 

results for less slender beams and higher modes of vibration. 

 

3.2.2 Rayleigh Beam Theory 

 

It was almost a century after the work of Euler before a new contribution was made to beam mechanics 

theories. This improvement came from Lord Rayleigh (1842-1919) in his treatise “The Theory of Sound” in 

1877. In this work, Rayleigh proposed a method of finding frequencies of vibration directly from an energy 

view by assuming a suitable form for the type of motion, rather than solving differential equations. He then 

used this approximate method to study transverse vibrations of beams. His most important contribution 

from this study was a correction that allowed for rotary inertia that had been previously ignored [40]. When 

the equations of motion that include this effect of the rotation of the cross section are employed, it is called 

the Rayleigh beam theory. The addition of this factor provides a slight improvement over the Euler-

Bernoulli model by slightly reducing the overestimation of the natural frequencies. The Rayleigh model 

still does not incorporate the contribution of shear displacement, and thus does not entirely fix the high 

frequency results [39]. 

  

3.2.3 Timoshenko Beam Theory 

 

In 1921, Stephen Timoshenko (1878-1972) proposed a beam theory that presents significant advancements 

over the Rayleigh beam theory. The Timoshenko beam theory, sometimes known as the first order shear 

deformation theory, expands upon the Euler-Bernoulli theory by incorporating the effects of both rotary 

inertia and shear deformation. In his calculations, Timoshenko found that the change due to the addition of 

shear was four times greater than the change from the inclusion of rotary inertia [41]. Because of this, the 

Timoshenko beam theory is more popular than the Rayleigh model. This model results in far more accurate 

frequency values for non-slender beams and high frequency modes than either of the other two options. In 

these two situations, the effect of shear forces on beam deflections is significant and cannot be neglected 

[39]. Therefore, the use of the Timoshenko model has significant applications beyond the potential use of 

either the Euler-Bernoulli or Rayleigh beam theories. An essential component in the Timoshenko model is 

the shape factor. This parameter is utilized to account for the variation of shear stress across the cross 

section. The shape factor is a function of the shape of the cross-section, Poisson’s ratio, and the frequency 

of vibration [39]. Usually, the dependence on the frequency is ignored, leading to less accurate results. In 

general, the Timoshenko model provides a substantial improvement over both the Euler-Bernoulli and 

Rayleigh beam theories and is still widely used. 

 

3.2.4    Elasticity-Based Beam Theory 

 
In order to study the accuracy of typical beam theories, a fully three-dimensional elasticity approach is 

proposed. A more advanced theory is considered because all three of the discussed theories still rely on a 

number of basic assumptions [39]. These include: 

 The axial dimension is significantly larger than the other two. 

 The Poisson effect is neglected. 

 Planes perpendicular to the neutral axis remain perpendicular after deformation. 
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 The material is isotropic. 

 The material is linear elastic. 

 The cross-section is symmetric. 

 The angle of rotation is small enough that the small angle approximation can be used. 
 

The proposed elasticity theory will remove a few of the assumptions listed above. The problem of the 

transversely vibrating beam typically cannot be solved exactly, so solutions using Ritz-based 

approximations are utilized in this advanced method. This allows for the inclusion of the Poisson effect and 

the ability to calculate accurate frequencies for non-slender beams and even anisotropic materials. The 

details of this fully three-dimensional elasticity method are described in the following section. 

 

3.3    Governing Beam Theory Equations 
 

Based on the assumptions made and the different mechanical effects that are included, each beam model 

has unique governing equations associated with it.  These equations represent the principles included in 

each model and the motion of the beam under loading or vibrations. A few different categories of equations 

are presented and explained for each model in this section. 

 

A key tool employed in the analysis of beam response is the assumption of a displacement field based on 

certain kinematic restraints imposed by the model. The general purpose of restraining the motion of a 

particle through a displacement field representation is to minimize the number of dimensions in a problem. 

By limiting the dimensions considered in analysis, the computation can be significantly simplified. As the 

theories progress from the simplest representation, Euler-Bernoulli Theory, to the most complex, Elasticity 

Theory, the constraints on the motion are reduced leading to more complex displacement fields. The 

assumed displacement field for each model discussed in this chapter will be introduced in the following 

paragraphs. 

 

Another common method to characterize the response of beam uses the governing differential equation or 

equations of motion for a particular model. This is generally developed using Hamilton’s principle [39]. 

This principle is based upon the Lagrangian function, sometimes called L, which is given as 
 

 
L ≡ U − K + A.  (3.1) 

 

In this function, U represents the total strain energy of the beam, K is the total kinetic energy of the beam, 

and A represents the potential energy of the loading [42]. For the study discussed in this paper, only free 

vibration is considered and the loading term A drops out.  The equation for Hamilton’s principle can be 

expressed as 

 

                                         (3.2) 
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This principle states that: 

 

The time integral of the Lagrangian function over a time  interval t0  to t1  is an extremum for 

the “actual”  motion  with respect  to all admissible virtual displacements which vanish,  first,  at 

instants of time t0 and t1 at all points of the body, and, second over Su , where the displacements are 

prescribed, throughout the entire time interval [42]. 

 

The Lagrangian function can be found for each of the beam theories discussed based upon the assumed 

displacement field and the different displacement effects that are included. By employing this principle, the 

governing differential equation of motion can be found for each theory. Along with the equation of motion, 

the boundary conditions that must be satisfied are also developed using this principle. Using the developed 

equations of motion, formulas for the spatial solution to each problem have been found. The differential 

equations of motion, boundary conditions, and spatial solutions that have been developed for the three 

typical beam theories will be discussed in this section. For the full elasticity theory, a generalized 

eigenvalue problem is developed rather than a differential equation to represent the motion of a beam, 

which will also be presented in this section. 

The same variables will be used for the discussion of all four models. In accordance with common 

practice for beam theory discussion, dimensionless variables will be employed for the geometric and 

vibrational parameters. The notation used follows 

 
• x1  = x = the dimension parallel to the width of the beam 

 
• x2  = y = the vertical or transverse dimension 

 
• x3  = z = the axial dimension 

 
• u1 = u = the unknown displacement in the x-direction 

 
• u2 = v = the unknown vertical or transverse displacement 

 
• u3 = w = the unknown axial displacement 

 

• L∗ = beam length 

 
• A∗ = cross section area 

 
• I ∗ = moment of inertia 

 
• ρ∗ = material density 

 

 
• E = Youngs Modulus 

 

 
• G = Shear Modulus 

 
• ω∗ = angular frequency 

 
• L = L∗/L∗ = dimensionless beam length 

 

• A = A∗/L∗2  = dimensionless area 
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1 

    

• I = I ∗/L∗4  = dimensionless moment of inertia 

 
• ρ = ρ∗L∗6 ω∗2 /(EI ∗) = dimensionless density 

  

• = dimensionless angular frequency 
 
3.3.1  Euler Bernoulli Model 

 

Displacement Field 

 

The Euler-Bernoulli beam theory contains only one unknown variable, the transverse displacement of the 

beam centroid.  This displacement is only a function of the axial dimension, which is the reason this is 

considered a one-dimensional theory.  Since the Poisson effect is neglected in this model, the assumed 

displacement field is of the form
 

u(x, y, z) = 0 
 
v(x, y, z) = v(z) 

 

dv 
w(x, y, z) = −y 

 
dz 

 
Equation  of Motion  and Boundary  Conditions 
 

The Lagrangian function determined from the kinetic and potential energy terms included in the Euler- 

Bernoulli model is given by [39] 

                                 (3.3) 

 

When this function is substituted into Hamilton’s principle, the equation of motion and boundary conditions 

are determined. This governing differential equation of motion is given by [39] 
 

 

∂2 v(z, t) 
ρA 

∂t2 

∂4 v(z, t) 
+ 

∂z4
 

 

= f (z, t).  (3.4) 

 

 

As mentioned before, only free vibration is considered for the vibrational study in this paper, so the forcing 

function, f (z, t), is set to zero. The boundary conditions, which need to be satisfied for this equation to be 

applicable, are [39] 
 
 

    (3.5) 

 
Each of the terms in these boundary conditions have a physical meaning that they represent. The expression 

v represents the transverse displacement, and thus, the first derivative ∂v/∂z represents the slope. The second 
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derivative of the displacement ∂2 v/∂z2 represents the moment, and finally the third derivative ∂3 v/∂z3 is the 

shear force. The δ operator signifies the variation of the term it is operating on. Therefore, if δv = 0 it means 

that the displacement is constant, or known.  It does not necessarily mean that the value of the displacement 

is zero. Similarly, the expression δ(∂v/∂z) = 0 indicates that the slope is known [39]. 

 

There are four different possible support conditions that can be considered for a beam. These are: a free end 

where the displacement and slope are unknown, a fixed end where the moment and shear are unknown, a 

hinged end where the shear and slope are unknown, and a rolling end where the displacement and moment 

are unknown. Each of these four possibilities have their own respective boundary condition combinations 

that must be satisfied. These are listed below. 
 

 

 

 

 

 

 

These known boundary conditions will be utilized to find mode shape and frequency equations for the 

varying beam cases that will be studied. 
 

Spatial Solution 

 

To simplify the analysis of different beam conditions, the principle of separation of variables has been used 

to isolate an equation for transverse displacement that is dependent on the axial direction only, and not time 

[39]. This new equation is referred to as the spatial solution and it is of the form 
 

 
V (z) = C1 sin az + C2 cos az + C3 sinh az + C4 cosh az. (3.6) 

 

 

In this equation, the parameter a is the dimensionless wave number. This value represents 1/2π times the 

number of wave cycles in a beam length [39]. For the Euler-Bernoulli model, this number is given by 

 

a = ρAω2 . (3.7)  
 

Since the spatial solution equation listed above is not dependent upon time, the boundary condition 

equations need to be altered before their substitution into the spatial solution.  The terms in the spatial 

boundary conditions become ordinary derivative, rather than partial and the variable v(z, t) is replaced with  

V (z). These updated boundary conditions can be substituted into the spatial solution, resulting in a system 

of equations. This system of equations can be solved to find the unknown C factors and equations for the 

vibrational frequency of different beam cases. These will be presented in a later section. 
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3.3.2  Rayleigh Beam Theory 

 
Displacement Field 

 
The assumed displacement field for the Rayleigh beam model is identical to the Euler-Bernoulli model. The 

inclusion of rotational inertia effects alters the kinetic energy of the beam, but does not affect the assumed 

displacement relationships. The model still only has the one unknown variable of the transverse 

displacement and ignores the Poisson effect. Therefore the displacement field is still of the form 
 

u(x, y, z) = 0 
 

v(x, y, z) = v(z) 

dv 
w(x, y, z) = −y  

dz 
 

Equations of Motion and Boundary Conditions 
 

The Lagrangian function for the Rayleigh beam theory includes the term for the kinetic energy due to the 

rotation of the cross section [39]. With this additional term the Lagrangian becomes 

  

 

 

(3.8) 
 

The addition of this kinetic energy term from the rotation alters the governing differential equation of 

motion found using Hamilton’s principle for the Rayleigh beam model. With this factor included the form 

the of equation becomes [39]   
 

 
 
 

∂2 v(z, t) 

ρA  
∂t2 

 

 
∂4 v(z, t) 

+ 

∂z4
 

 

 
 
− ρI 

 

 
∂4 v(z, t) 

∂z2 ∂t2 

 

 
 
= f (z, t).  (3.9) 

 

Similar to the Euler-Bernoulli model, the function f (z, t) is set to zero to represent free vibration. The boundary 

conditions that need to be satisfied for this model are [39] 

 

∂2 v ∂v  
1 ∂3 v ∂3 v 

1 

∂z2 
δ 

∂z 
= 0

 ∂z3  
− ρI 

∂z∂t2  
δv

 
= 0. (3.10) 

0 
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The boundary condition terms that represent the displacement, slope, and moment are the same as in the 

Euler-Bernoulli model. The term that represents the shear force has changed to become (∂3 v/∂z3−ρI ∂3 

v/∂z∂t2)). Since this boundary term now includes a time derivative, it will have to be redefined to be 

applicable with the spatial solution. This is discussed in the following paragraph. Again, there are four 

possible support conditions, each with unique boundary condition combinations. These are listed below. 
 
 

 

 

 

 

 

 

 

 

 

Spatial Solution 

 

By separating the time and spatial variables in the governing equation of motion, the spatial solution for the 

Rayleigh beam theory was found to be [39] 
 

 
V (z) = C1 sin az + C2 cos az + C3 sinh bz + C4 cosh bz. (3.11) 

 

 
In this model there are two dimensionless wave numbers, which are defined by the following expressions [39]. 

 
 
 
 
 
 
 
 
 
 
 

The boundary conditions listed in the previous section need to be updated to be compatible with the spatial 

solution. For the displacement, slope, and moment conditions, the partial derivatives become ordinary 

derivatives and the v(z, t) variable is changed to V (z) similar to in the Euler-Bernoulli model. The shear 

term in this case cannot be updated as simply as before though, since it includes a spatial derivative. In this 

case, the expression for shear in the boundary terms becomes [39] 
 

 

d3 V 

dz3 

 

+ ρI ω2 d   V 
. 

dz 
 

 

These spatial boundary conditions can be applied to the spatial solution to determine the unknown C 

constants and frequency equations for the Rayleigh model. These solutions will be discussed in a following 

section. 
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3.3.3  Timoshenko Beam Theory 

 
Displacement Field 

 
Since the Timoshenko beam theory includes deformation due to shear, the total angle of rotation for a cross 

section is now the sum of both the bending and shear deflection effects. Thus, the Timoshenko model 

increases the number of unknown variables to two. The total cross sectional rotation due to shear is now 

unknown as well as the transverse displacement. In the spatial description, the variable for total rotation is 

( ). This variable is only dependent upon the axial dimension, similar to the transverse displacement. The 

Timoshenko beam theory is therefore still only a one-dimensional theory. Since it is one-dimensional, the 

Poisson effect is again neglected and the assumed displacement field becomes 

 
u(x, y, z) = 0 

 
v(x, y, z) = v(z) 

 
w(x, y, z) = −yΨ(z). 

 

 
Equations of Motion and Boundary Conditions 
 

If strain-displacement and constitutive laws are used with the above displacement field to determine the 

values for stress, a significant problem is encountered. Finding stress through this method results in a 

constant shear stress throughout the cross section. This is physically impossible since the outside surfaces 

of the beam are traction-free. Timoshenko realized this issue and introduced the shear factor, which was 

discussed before. This factor partially corrects this issue, but is still somewhat approximate. For the 

purposes of the vibrational study in this paper, a shear factor that is dependent on the cross section shape 

and Poisson ratio will be used for calculations involving an isotropic material. For a rectangular cross-

section, the shape factor is given as [39]
 

 

kk = 

 

 
10(1 + ν) 

12 + 11ν 
. (3.14)
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x G 

For an orthotropic material, determining an adequate shear factor is not so simple. Instead of the equation 

listed above, a new shear correction factor was determined using Hutchinson’s beam theory by Puchegger 

and co-workers [43]. The shear factor found through this method is related to the cross section shape, two 

Poisson ratios, two shear moduli, and Young’s modulus in the axial direction. 

 

The derived equation is given by 
 

 

kk = − 
zy 

 
[(A/I 2 )C4 

Ez 

+ νzy − 

 
(Iy /Ix 

 
)νzx 

 

] 
. (3.15) 

 

 

In this equation C4 is a constant that can be found using the following formula. 

 
 
 

 

The functions f1 and f2  can be found in the paper by Puchegger and others [43]. 

 

By using these shear factors, the potential energy from shear can be included in the Timoshenko beam 

model. The Lagrangian function is therefore given by [39] 

 

 

 
 
 

 

Since there are two unknown variables for this theory, using Hamilton’s principle produces two differential 

equations of motion, which are [39] 
 

∂2 v(z, t) 

ρA 
∂t2 

− kkGA ∂2 v(z, t) 

∂z2 

∂α(z, t) 
− 

∂z 

 

= f (z, t) 

∂2 α(z, t) 

ρI 
∂t2 

∂2 α(z, t) 
− 

∂z2 

− kkGA ∂v(z, t) 
∂z 

 

− α(z, t) = 0. (3.18) 
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The function f (z, t) is set to zero again because only free vibration is considered for the analysis. The 

boundary conditions that need to be satisfied for these equations are given by 

 

 
 
 
 
where α(z, t) represents the total rotation of the cross section [39].  

 

The boundary condition terms have a different appearance in the Timoshenko model because of the 

additional variable of section rotation, but the physical meaning of the terms is very similar to that of the 

Euler-Bernoulli and Rayleigh beam theories. The expression for the transverse displacement is still v, but the 

term for the slope is now simply represented by α rather than the derivative of the displacement. Similarly, 

the moment term is now ∂α/∂z rather than the second derivative of transverse displacement. The shear term 

in this model is quite different from the previous two theories since the shear factor and shear modulus are 

now included. The expression for shear is now kkGA(∂v/∂z − α). With these new boundary condition 

expressions, the combinations for each of the four possible support conditions have changed and are listed 

below. 

 

  

Spatial Solution 
 

In order to determine spatial solutions for both the transverse displacement and the total rotation, the 

governing equations provided in the previous section must first be decoupled so each equation only 

contains one of the unknown variables [39]. The decoupled form of these equations is given below. 
 

 
 

 

 

 

For these equations, when the method of separation of variables is applied, it is found that two  different 

cases need  to be considered  for the spatial solutions [39]. These two cases are when the frequency is less 

than a critical value, or if it is above this value. In Han and co-workers work, it was shown that this critical 

frequency value is equal to √𝑘1𝐺𝐴/𝑝𝐼 and is referred to as 𝑤𝑐. 
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− 

For the case when ω < ωc  the form of the spatial solutions for the transverse displacement and total section 

rotation are given by 

 

 

 
 
 
 

 

The expressions for the two dimensionless wave numbers for this case are given by the following expressions 

[39].
 
 
 
 
 
 
 
 

ρω2 

 

 

 

 

Although it seems that there are now eight unknown constants to solve for the Timoshenko beam model, the 

Ci  and Di  values are related to each other and thus only four unknowns  need to be determined for the full 

solution [39]. The relationships between these factors are given below. 

 
 

 
 

D1  = − 

 
D3  = 

kkGAa2 + ρAω2 

C2 D2  = 

kkGAa 

kkGAb2 + ρAω2 

C4 D4  = 

kkGAb 

kkGAa2 ρAω2 

C1 

kkGAa 

kkGAb2 + ρAω2 

C3 (3.24) 

kkGAb 
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The equations are slightly different for the case when ω > ωc . The spatial solutions become [39] 

 

 

 

 
 

 

 

 

The expression for the dimensionless wave number, a, is the same as for the previous case. The equation for 

b̄ is slightly different, though, and is given by 

 
 
 
 
 

 

The constants C̄ i
 and D̄ i

 are also interrelated for the case of ω > ωc , so there are still only four unknowns 

for this case. These relationships are expressed as [39] 
 

 

 

 

 

 

 

The dimensional wave numbers b and 𝑏̅ are also related through the following equation. 

 

b = i 𝑏̅  (3.28) 

 

All these relationships, along with the spatial solutions, can be combined with known boundary conditions 

for varying support conditions to find the mode shapes and frequency equations for different beam cases. 

The boundary conditions provided in the previous section need to be updated to be compatible with the 

spatial solution, similar to the Euler-Bernoulli and Rayleigh models. This is simply done for the 

Timoshenko model by changing partial derivatives to ordinary, replacing α(z, t) with Ψ(z), and replacing 

v(z, t) with V (z). 
 
3.3.4    Linear Elasticity Theory 

 
The formulation for the mode shape and frequency solutions through a three-dimensional linear elasticity 

theory differs significantly from the three one-dimensional theories previously discussed. Rather than using 

an assumed displacement field, governing differential equations, and spatial solutions, Ritz-based 

approximations are used to solve Hamilton’s principle. The details of this are presented in the following 

paragraphs. 
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Constitutive Relationship 

 

In order to consider all three dimensions, including the Poisson effect, the development of this theory 

begins with the generalized Hooke’s Law. This constitutive relationship in indicial form is given as 
 

σij = Cijkl∈lk (3.29) 
 

where σij  represents the stress tensor, Cijkl  is the elastic stiffness tensor, and kl is the strain tensor. In this 

full form, there are nine stress and strain components and 81 stiffness terms. This would pose a very 

complicated problem, but fortunately the problem can be significantly simplified. Using the principle of 

symmetry, it can be shown that σij = σji and ∈kl = ∈lk . This reduces the problem to six stress and strain 

components and only 36 stiffness terms. It has also been proven that the stiffness matrix is symmetric, 

which reduces this number even further to 21constants. Lastly, if the considered material is orthotropic and 

has three planes of symmetry, the stiffness matrix only contains nine independent constants. This reduced 

constitutive law that will be considered in analysis can be expressed as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The variable γ in this equation represents physical shear stress, which is equivalent to 2. The elastic stiffness 

constants in this matrix equation are related to the basic material properties E, G, and ν through the 

following equations. 
 
 

 
 
 
 
 
 
 
 
 

This constitutive law will be utilized in the solution for the elasticity-based approximation. 
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Hamilton’s Principle 

 
For this full elasticity theory, Hamilton’s principle can be written as 

 
 

 
 

 

 

 

 

where u̇  = ∂u/∂t and the conventional notation for stress (σ11 = σ1 , σ23 = σ4 , etc.) has been used [44]. 

 

For this advanced beam model, selected displacement approximation functions will be used to find a 

solution to the above equation, rather than using potential and kinetic energy equations based upon an 

assumed one-dimensional displacement field and a few included displacement effects. Approximations are 

used because of the difficulty in finding an exact solution to the free vibration of a three-dimensional solid. 

The above equation only contains displacement variables in the second integral, and only stress and strain 

terms are found in the first integral.  To determine expressions for these stress and strain terms, strain-

displacement relationships are utilized as well as the constitutive law discussed previously. The basic strain-

displacement equation that is utilized for this analysis for small displacements is given as 

 
 
 

(3.35) 

 

The strains found from this relation are used as the δ terms in Hamilton’s equation. These strain expressions 

can then be substituted into the constitutive law to determine the stress expressions. For this study, Ritz-

based approximations will be utilized for the displacement functions and are explained in the next section. 
 

Ritz Approximations 
 

The namesake for the Ritz method comes from Walther Ritz, who was a Swiss theoretical physicist. When 

Ritz was working with the bending of rectangular plates, he proposed approximation functions in the form 

of a finite series [40]. When used for displacement, the general form for the three direction component 

approximations can be written as 
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In these equations c, d, and e are unknown constants that depend on time. The φo terms represent the 

simplest functions that satisfy the essential boundary conditions for that displacement direction. In the study 

discussed in this paper, the initial boundary conditions are assumed to be zero, with no initial displacement 

or velocity. The φo terms are therefore all equal to zero for the considered case. In these approximation 

equations, φj represents a selected approximate function for each respective direction. These functions must 

fulfill the three following requirements. 

 

1. They satisfy the homogeneous form of the essential boundary conditions. 

2. They are linearly independent of each other. 

3. They must become increasingly more complex from the first term to the last used. 
 

These Ritz-based approximations will be substituted into the equation for Hamilton’s principle presented 

before to calculate a spatial solution. By using a large number of approximation terms for each 

displacement component, very accurate solutions can be determined for the mode shapes and frequencies of 

vibration for a beam. When the substitution into Hamilton’s principle equation is done and harmonic 

motion is assumed, the problem is reduced to a generalized eigenvalue problem expressed as follows. 

 

 

 

 

 

 

The elements of the stiffness ([K]) and mass ([M]) matrices are related to the Ritz approximations used 

and some basic material properties of the beam that is considered. The stiffness matrix is symmetric, so 

there are only six different equations for those elements. The mass matrix is diagonalized so there are only 

three different forms. All of these formulas are given below. 

  

 



 

37 
 

  

 



 

38 
 

 (3.46) 
 

The general form for the Ritz approximation functions will differ for each of the different support 

conditions that will be considered. The primary base for all of the function employed is a simple power 

function. The most basic form of this is given as 
 

φi (x, y, z) = xj yk zl . 

 

These type of functions provide simplicity when evaluating integrals over a parallelepiped. Different terms 

were included to ensure proper support conditions, but power functions were utilized as much as possible. 

When any combination of values for j, k, and l is considered, these power functions can represent any type 

of vibrational mode. If all possible combinations are evaluated, the results will include flexural vibration, 

shear vibration, and torsional vibration modes about all three axes. For the purposes of the investigation 

performed for this work, only the transverse flexural modes were of interest.  To simplify and reduce the 

calculations required, group theory was utilized. Group theory splits all the possible Ritz functions into 

eight different symmetry groups [45]. Parallelepipeds contain three symmetry planes which intersect each 

other at right angles. Using these symmetry planes, the possible displacement patterns can be separated by 

considering specific combinations of odd or even behavior for each dimension about these planes. For 

example, half the groups follow the pattern that the u displacement is odd in x, even in y, and even in z. 

Therefore only odd integers will be considered for j and only even integers for k and l. The v and w 

deformation patterns can be split similarly, and through this certain modes of vibration can be isolated. 

Therefore, for the calculations performed for this paper, only two groups, which represent the transverse 

flexural vibration modes were considered [45]. This isolation of the flexural modes was possible for all 

three support conditions which were studied. 

 

The three cases that were considered for the study in this paper are fixed-free, fixed-fixed, and simply 

supported. The Ritz functions that were used for each of these, as well as the frequency equations for the 

three one-dimensional beam theories, will be presented in the following sections. 

 

3.3.5  Fixed-Free Beam 

 
Although there are 10 different end condition combinations using symmetric and antisymmetric modes, 

these can be reduced to four cases. These are free-free, fixed-free (cantilevered), hinged-hinged (simply 

supported), and fixed-fixed [39]. An in-depth study of when the typical beam theories fail for the free-free 

case has already been conducted and will not be considered for this paper. Thus only three different support 

combinations need to be analyzed to determine a full picture of when the three one-dimensional theories are 

insufficient. The frequency equations that will be used for analysis of the Euler-Bernoulli, Rayleigh, and 

Timoshenko models were developed by Han and co-workers [39]. Each of these equations will be reiterated 

in this summary for reference. 

 

The first case considered will be the cantilevered beam. When the boundary condition discussed in the 

previous section was substituted into the spatial solutions, the frequency equations for the free-free case 

were found for each of the three one-dimensional theories. 
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Euler-Bernoulli 

 
For the Euler-Bernoulli case, the frequency equation is expressed as 

 
cos a cosh a − 1 = 0. (3.47) 

 

For this beam model, because the relationship between the dimensionless wave number and the frequency is 

so simple, the frequency can be found directly using the following equation [39]. 
 

 
 

ω∗ =    E
∗I ∗ 

2
 

ρ∗A∗L∗4 
a

 

 

(3.48) 

 

 

The ∗s in this equation signify that these parameters are no longer dimensionless. The dimensionless wave 

numbers for the first five modes of vibration were found and are listed below [39]. 

 

Table 3.1  Euler-Bernoulli Wave Numbers 

 for Fixed-Free Beam 
a1 a2 a3 a4 a5 

1.875 4.694 7.855 10.996 14.137 

 

These values were used to find the first five frequencies of vibration for beams with varying slenderness 

ratios, which are compared with the values from the other beam models. 
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2 2 

Rayleigh 

 

The frequency equation for a cantilevered beam using the Rayleigh beam model is given by [39] 

 

(b6 − a6 ) sin a sinh b + 2a3 b3 cos a cosh b − 2a3 b3 = 0. (3.49)  

 

Because this model involves two wave numbers, the process to find the frequency values is not as simple. 

The equation for the natural frequency in terms of these two wave numbers is expressed as 
 

 

ω2 = 
a  − b 

ρI 

 

. (3.50) 

 

To simplify the calculation, the wave number b is expressed in terms of a by the relation 

 
 

b = a 

  
1
 

a2 k2 + 1 

 
. (3.51) 

 

where k is equal to 1/s and s is the slenderness ratio, which is given by [39] 

 
  

A∗ 

s = L∗    
I ∗ 

 
. (3.52) 

 

There are now two  equations with  three unknowns, so an iterative  process is utilized to converge to the 

accurate wave numbers and natural frequencies. This process has been performed for multiple beams of 

varying slenderness ratio. The first five frequencies are then compared to the other considered beam 

models. 

 

Timoshenko 

 

Two frequency equations are necessary for the Timoshenko beam model due to the two different frequency 

cases discussed in the previous section. The frequency equation for a fixed-free beam when ω < ωc is given 

by 

 

(a2 − b2 ) sin a sinh b − ab 
a 

4 + a4 γ 4 + 4γ2 a2 b2 + b4 γ4 + b4
 

 

cos a cosh b − 2ab = 0. (3.53) 

(b2 + γ2 a2 )(a2 + γ2 b2 ) 
 

The equation for ω > ωc is slightly different and is expressed by [39] 

 

 
4 + a4   4

 
4γ2

 
2¯2 + ̄ 4

 
4 + ̄ 4

 

(a2 + ̄b2 ) sin a sin ̄b − ab̄ 
a γ  − a b b  γ b  

cos a cos ̄b − 2ab̄ = 0. (3.54)
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Both of these equations use the term γ to simplify the equation. This term is given as 
 
 

γ2 = 
2(1 + ν) 

. (3.55) 
kk 

 

 

This beam model has two dimensionless wave numbers, similar to the Rayleigh theory, and the problem is 

again simplified by finding a relationship between these two values [39]. When ω < ωc this relation is 

 

(γ2 b2 + a2 )(a2 γ2 + b2 ) 

(a2 − b2 )(1 + γ2 ) 

 

= s2 . (3.56) 

 
For the case where ω > ωc  the relationship is expressed as 

 

 (−γ2b̄2 + a2 )(a2 γ2 − ̄b2 )  2
 

(a2 + ̄b2 )(1 + γ2 )  
= s . (3.57)

 
 

Using these equations along with the frequency equations, an expression for the natural frequency of a 

beam can be found. This expression for the case where the natural frequency is less than the critical 

frequency is given by 

 
  

1

(3.58) 

 

If the natural frequency is greater than the critical frequency, the expression for the natural frequency is [39] 
 

 

1 
ω∗ = 

L∗ 

a2 + ̄b2 

1 + γ2 

E∗ 

. (3.59) 
ρ∗ 
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With these frequency expressions and the relationships between wave numbers, there are again two 

equations and three unknowns for each of the two cases. An iterative process is utilized once more to 

converge to the correct answer through these sets of equations. By this procedure, the first five natural 

frequencies are found for this theory and are compared with the results from the other three beam models. 

 

Linear Elasticity 

 

As discussed in the previous section, the natural frequencies and modes shapes for the linear elasticity 

model will be found by solving a general eigenvalue problem. Suitable Ritz-approximations are necessary 

to determine the matrix values for this eigenvalue problem. For the case of a cantilever beam, the following 

general form for the Ritz equations is used. 

φi  = xj yk zl l > 0 (3.60)  

 
For this beam case, the same approximation can be utilized for u, v, and w since the boundary constraints 

are identical for all three direction components. For this support case, the number of Ritz terms used to 

express each of the displacement components is set by the parameter j + k + l = 16, which provides very 

accurate frequency results. 

 

3.3.6    Fixed-Fixed Beam 

 

Using the boundary conditions discussed for a fixed support at both ends of a beam, the frequency 

equations have been determined for each of the three typical beam theories. A different form of Ritz-based 

approximations has also been found for the application of a fixed-fixed beam.  These equations will be 

presented in the following paragraphs. 

 

Euler-Bernoulli 

 

The frequency equation for a fixed-fixed beam using the Euler-Bernoulli model is given by 

 
cos a cosh a − 1 = 0. (3.61)  

 

The equation for the natural frequency in terms of the dimensionless wave number a is identical to that used 

for the cantilever beam. The first five wave numbers for this support case have been developed by Han and 

co-workers and are given below [39]. 

 
Table 3.2  Euler-Bernoulli Wave Numbers 
 for Fixed-Fixed Beam 

a1 a2 a3 a4 a5 
4.730 7.853 10.996 14.137 17.279 

 

The first five natural frequencies using these values have been calculated and are compared to the other 

three discussed beam models. 
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− 

Rayleigh 

 
The frequency equation using fixed boundary conditions at both ends of a beam for the Rayleigh model is 

expressed as [39]
 
 

(b6 − a6 ) sin a sinh b + 2a3 b3 cos a cosh b − 2a3 b3 = 0. (3.62) 

 

The process of determining the natural frequencies and the equations used for this procedure are the same 

as discussed in the fixed-free beam case. Using an iterative process, the dimensionless wave numbers and 

frequencies for the first five modes of vibration have been determined and compared with the other beam 

theories. 

 

Timoshenko 
 

For the case of ω < ωc, the frequency equation using the Timoshenko beam model is expressed as 

 
(a2 − b2 )(γ2 a2 + γ2 b2 + γ2 ab − ab)(γ2 a2 + γ2 b2 − γ2 ab + ab) 

2ab(b2 + γ2 a2 )(a2 + γ2 b2 

 

sin a sinh b − cos a cosh b + 1 = 0. (3.63) 

 

 

If ω > ωc, the frequency equation becomes 

 
(a2 − ̄b2 )[(γ2 a2 − γ2b̄2 )2 + (γ2 ab̄ − ab̄)2 ] 
 

2ab̄(   ̄b2 +γ  

a2 )(a2 

 

− γ2b̄2 ) 
sin a sin ̄b − cos a cos ̄b + 1 = 0. (3.64) 
 

 



 

44 
 

The expression for the natural frequency is identical to that presented for the fixed-free beam case [39]. 

Using this equation and the frequency equation, the first five natural frequencies were found using an 

iterative process similar to that discussed for the cantilever beam. 

 

Linear Elasticity 

 

The general form of the Ritz approximation terms is similar to that of the fixed-free case, but it has been 

altered to fulfill the proper fixed end boundary conditions at the second end. The origin of the axes is again 

set at one end of the beam, so the approximation terms for this support case need to provide zero 

displacement and slope at z = 0 and z = L. The general form that was selected to allow for this is given as 
 

 

φi  = xj yk zl (z − L)2 . (3.65) 

 

This approximation form can again be used for all three direction components, u, v, and w, for the fixed-fixed 

beam case since the boundary conditions are the same for all three directions in a fixed end. The same 

parameter of j + k + l = 16 that was used to determine the number of terms in the approximation for the 

cantilever beam is again used for the fixed-fixed beam. This provides for very accurate frequency and mode 

shape solutions when the general eigenvalue problem is solved for the linear elasticity beam model. These 

solutions will be compared with the typical theories to understand how the assumptions in those theories 

affect their accuracy. 

 

3.3.7 Simply Supported Beam 

 
For the simply supported beam case, the boundary conditions of no transverse displacement and no moment 

are applied at both ends of the beam. Substituting these requirements into the spatial solutions allows for the 

determination of the frequency equation for each beam model. Ritz approximation forms for the linear 

elasticity model of a simply supported beam are also discussed. 

 

Euler-Bernoulli 

 
The frequency equation for a simply-supported beam as developed by Han and co-workers is given by [39] 

  
sin a sinh a = 0. (3.66) 
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The equation for the natural frequency from the previous two cases can also be used for this support 

condition. The first five dimensionless wave numbers that can be substituted into this equation are listed 

below [39]. 

 

Table 3.3  Euler-Bernoulli Wave Numbers for Simply Supported Beam 
a1 a2 a3 a4 a5 
π 2π 3π 4π 5π 

 

Rayleigh 

 
For the Rayleigh beam model, the simply supported frequency equation is expressed as [39] 
 

 
sin a sinh b = 0. (3.67)  

 

Using the relation between wave numbers and the equation for natural frequency presented before, the first 

five natural frequencies have been found through iteration to converge on the solution. These values are 

compared with the other beam models for the simply supported case. 

 

Timoshenko 

 

When the natural frequency is less than the critical value, the frequency equation for a simply supported 

beam using the Timoshenko theory is identical to the Rayleigh model equation as seen below. 
 

 
sin a sinh b = 0 (3.68) 

 

 

 

For the case when the frequency is greater than ωc the frequency equation is given by [39] 

 

sin a sin  ̄b      = 0. (3.69)  
 

With the natural frequency equation that was presented for the two cases in the Timoshenko model, the 

above frequency equations can be used to determine the first five modes of vibration. An iterative 

procedure is again utilized to converge to the solutions for the simply supported case. These solutions are 

compared with the other models, especially the linear elasticity case, to study the accuracy of this beam 

model. 

 

Linear Elasticity 
 

The Ritz-based approximations for a simply supported beam are significantly different than for the other 

two support cases considered, because the constraints are not the same for all three direction components 

for a hinged end. Therefore, the same general form of approximation terms cannot be employed for all three 

directions. Another considerable difference for the simply supported case comes from the inability to 

satisfy the necessary boundary conditions through a power series. In order to satisfy these conditions and 

still have the ability to simply evaluate the functions over a parallelepiped, trigonometric functions are 

utilized for the axial dimension. Sine functions are used for the transverse and out-of-plane displacements, 

and cosine terms will be employed for the axial displacement. The type of trigonometric function that is 

used for each displacement component was determined by studying the displacement patterns from a finite 

element analysis of simply supported beam. With all these considerations, the form of the approximations 
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are as follows. 
 

 
 

φu j k
 lπ

z 
n 

(3.70) 
 
 
 
 

(3.71) 
 
 

(3.72) 
 

 

φv j k
 

 
lπz

A slightly different parameter of  j + k + l = 14 was used to set the number of terms used in the 

approximation for each displacement coordinate. This was changed because using a limit of  j + k + l = 16 

resulted in so many terms in each approximation that there was not enough memory on the server used for 

calculation to perform the analysis. The results of this linear elasticity theory are compared with the typical 

one-dimensional theories, particularly for less slender beams to study the accuracy of both the natural 

frequencies and modes shapes of vibration. 

 

3.4 Conclusion 
 

Four different beam theories have been presented and discussed in this chapter. Using the information 

presented in this chapter, a study has been conducted to investigate when three typically used, one-

dimensional beam theories begin to deteriorate in accuracy. To complete this study, the three beam theories 

have been compared with a fully three-dimensional, linear elasticity beam model that utilizes Ritz-based 

approximations to calculate highly accurate natural frequencies and mode shapes for the first five modes of 

vibration of beams with varying dimensions. The results and conclusions from this vibration study are 

discussed in Section 4. 
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4. METHODS AND RESULTS 
 
4.1  Introduction 
 

A study of vibrational mechanic theories was performed to investigate their accuracy and 

effectiveness. This analysis was performed for three different support cases: fixed-free, fixed-

fixed, and simply supported. For each of these cases, the frequencies of the first five flexural 

vibration modes were computed using the Euler-Bernoulli, Rayleigh, and Timoshenko beam 

theories, as well as a full elasticity approximation with and without the inclusion of the Poisson 

effect. One of the assumptions utilized in the three common theories that may cause inaccuracies is 

that a beam is slender. One purpose of this study was to investigate when this assumption leads to 

significant errors in the frequency results. Therefore, the modal frequencies were found for a 

variety of slenderness ratios, ranging from less than 7 to almost 350. Another item of interest in 

this study was how the assumption of an isotropic material affects the accuracy of typical beam 

theories. To investigate this, the resonant frequencies were found for both and isotropic material 

(steel) and an orthotropic material (graphite-magnesium). The last assumption examined in this 

study was that the Poisson effect was negligible. This was studied by utilizing the Ritz-based 

approximation with a zero Poisson ratio, as well as the typical material Poisson ratios. The results 

of these investigations are presented and discussed in the remainder of this section. 

 

Also examined in this section are the results of calculations performed for a potential new 

infrastructure sensor. The device is a microelectromechanical system (MEMS) sensor, which will 

operate by exciting vibrational resonance in a small fixed-fixed bridge within the device using a 

microwave-frequency current. In order to properly excite the bridge, accurate resonant frequencies 

are needed. Using the full elasticity approximation presented in the vibrational mechanics study, 

the resonant frequencies for flexure in the lateral modes have been determined. This information 

will be useful in future testing and calibration of the device. 

 

4.2  Vibration Study Methods 

 

As mentioned in the previous section, the accuracy of typical beam theories was investigated by 

deter- mining the resonant frequencies of the first five modes for varying beam types using each 

theory. In order to calculate these results, computing programs were prepared for each theory and 

support case based upon the governing equations presented in Section 3. Each of these programs 

were written to allow for different beam geometries and material properties. 

 

The assumption of one beam dimension being significantly larger than the other two was the first 

to be investigated. This was done by considering beams of many different lengths, and thus, 

varying slenderness ratios.  Each calculation was done for a one-by-one cross section. The 

different lengths that were studied include: 2, 5, 10, 20, 40, and 100. Calculations using the three 

typical theories, as well as a full elasticity approximation, were performed for each of these lengths 

and compared. These results are discussed in the next section of this report. 

 

The three beam theories of interest in this study also assume that the material of a beam is 

isotropic. An anisotropic material can be somewhat accommodated through the shear coefficient 

for the Timoshenko model, but all other beam theory equations do not consider the effect of 

anisotropy. This vibrational study, therefore, also considered the accuracy of these models when a 
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beam is isotropic or orthotropic.  Steel was chosen as the isotropic material to study, while 

graphite-magnesium was utilized for an orthotropic material. The elastic constants and stiffness 

values for a graphite-magnesium composite were determined by H.M. Ledbetter and others [46]. 

These values, as well as those for steel, are given in Table 4.1. 

 

The last item of particular interest in this study is the Poisson effect. The three theories typically 

used for beam analysis neglect this effect. The full elasticity approximation allows for 

displacements due to the Poisson effect and thus allowed for an investigation of what involvement 

this phenomenon has on the frequency and mode shapes of a vibrating beam. Also, to attempt to 

isolate the influence of the Poisson effect from the other two assumptions previously discussed, the 

Ritz-based elasticity approximation was used to calculate frequencies with zero ν as well as the 

with the correct Poisson ratios listed in Table 4.1. The findings of this study are presented in the 

following section. 

 

4.3  Vibration Study Results 
 

The resonant frequencies for the first five modes were the primary results that were investigated in 

this vibrational mechanics study. These values were found for various lengths, materials, and 

support conditions. 

 
Table 4.1  Material Properties for Vibration Study, 

 units are GPa except for dimensionless 

 νij  and Density in kg/m3 
Constant Steel Graphite-Magnesium 

E1 200 23.81 
E2 200 23.81 
E3 200 166.64 
ν12 0.3 0.359 
ν13 0.3 0.045 
ν23 0.3 0.045 
ν21 0.3 0.359 
ν31 0.3 0.314 
ν32 0.3 0.314 
C11 269.23 28.19 
C22 269.23 28.19 
C33 269.23 174.30 
C44 76.923 17.91 
C55 76.923 17.91 
C66 76.923 8.76 
C12 115.38 10.67 
C13 115.38 12.20 
C23 115.38 12.20 

Density, ρ 7830 1738 

 

All the calculated frequencies can be found in the following tables. The results for a cantilever 

beam are listed in Table 4.2 and Table 4.3 for an isotropic and orthotropic beam, respectively. For 

a fixed-fixed support case, the results are provided in Table 4.4 and Table 4.5, again for isotropic 

or orthotropic materials. Lastly, the frequencies for a simply supported beam case are given in 
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Table 4.6 and Table 4.7. For most of the cases involving a fixed support, the higher mode 

frequencies from the Timoshenko beam model were not able to be calculated. It seems that when 

the slenderness ratio becomes so small, the program created to determine the Timoshenko values 

will not converge to an answer. Even without some of these values trends were still able to be 

determined and conclusions drawn. From the values found, the influence of slenderness, anistropy 

and the Poisson effect could be investigated. The effect of each of these factors for the different 

support conditions are discussed in the remainder of this section. 

 

Table 4.2  Frequencies of an Isotropic Cantilevered Beam 

L Mode E-B Rayleigh Timoshenko ν = 0 Full 
 

 
2 

(S=6.928) 

1 

2 

3 

4 

5 

1282.29 

8036.55 

22501.84 

44101.46 

72895.05 

1224.17 

6205.44 

14104.63 

22570.04 

31184.49 

1093.04 

4147.35 

8676.21 

11251.97 

14596.18 

1099.82 

4284.97 

8898.61 

11306.62 

13161.22 

1149.29 

4313.85 

8919.19 

11320.33 

13396.42 
 

 
5 

(S=17.32) 

1 

2 

3 

4 

5 

205.19 

1285.87 

3600.77 

7056.23 

11663.21 

203.62 

1221.42 

3211.34 

5812.27 

8811.58 

199.08 

1074.13 

2560.16 

4255.09 

6055.60 

199.33 

1089.48 

2634.54 

4446.58 

6276.84 

209.11 

1121.12 

2681.66 

4501.16 

6312.54 
 

 
10 

(S=34.64) 

1 

2 

3 

4 

5 

51.297 

321.467 

900.193 

1764.058 

2915.805 

51.198 

317.215 

872.477 

1667.443 

2673.048 

50.900 

305.250 

803.480 

1458.715 

2222.277 

50.924 

307.096 

815.589 

1501.403 

2382.836 

53.452 

318.146 

836.107 

1526.117 

2407.668 
 

 
20 

(S=69.28) 

1 

2 

3 

4 

5 

12.824 

80.367 

225.048 

441.015 

728.951 

12.818 

80.099 

223.244 

434.556 

712.239 

12.799 

79.291 

218.069 

416.846 

668.673 

12.803 

79.570 

220.133 

425.520 

712.071 

13.440 

82.617 

226.432 

433.694 

719.086 
 

 
40 

(S=138.56) 

1 

2 

3 

4 

5 

3.2061 

20.0917 

56.2621 

110.2536 

182.2378 

3.2057 

20.0752 

56.1457 

109.8364 

181.1688 

3.2045 

20.0237 

55.8054 

108.6221 

178.0269 

3.2053 

20.0807 

56.2424 

110.5882 

189.1699 

3.3647 

20.8626 

57.9127 

112.8251 

190.9816 
 

 
100 

(S=346.41) 

1 

2 

3 

4 

5 

0.51297 

3.21467 

9.00193 

17.64058 

29.15805 

0.51296 

3.21431 

8.99848 

17.62862 

29.13104 

0.51293 

3.21298 

8.98964 

17.59666 

29.04698 

0.51305 

3.22153 

9.05576 

17.90082 

30.84565 

0.53857 

3.34755 

9.32763 

18.26871 

31.13821 
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Table 4.3  Frequencies of an Orthotropic Cantilevered Beam 

L Mode E-B Rayleigh Timoshenko ν = 0 Full 
 

 
2 

(S=6.928) 

1 

2 

3 

4 

5 

2484.37 

15570.42 

43602.01 

85444.40 

141230.55 

2371.78 

12022.72 

27327.02 

43728.35 

60418.40 

1703.94 

5434.23 

- 

- 

- 

1729.30 

5548.43 

9726.02 

10818.68 

11667.13 

1738.72 

5556.60 

9801.51 

10871.55 

11715.13 
 

 
5 

(S=17.32) 

1 

2 

3 

4 

5 

397.50 

2491.27 

6976.32 

13671.10 

22596.89 

394.50 

2366.44 

6221.81 

11260.99 

17072.00 

365.77 

1659.44 

3603.82 

5570.92 

7556.90 

366.76 

1707.68 

3708.18 

5677.38 

7700.27 

369.45 

1713.45 

3715.05 

5688.80 

7714.03 
 

 
10 

(S=34.64) 

1 

2 

3 

4 

5 

99.375 

622.817 

1744.080 

3417.776 

5649.222 

99.194 

614.588 

1690.380 

3230.588 

5178.898 

97.203 

542.805 

1324.954 

2240.531 

3220.536 

97.281 

549.257 

1359.684 

2335.581 

3337.431 

98.043 

551.907 

1364.268 

2342.316 

3343.200 
 

 
20 

(S=69.28) 

1 

2 

3 

4 

5 

24.844 

155.704 

436.020 

854.444 

1412.305 

24.834 

155.187 

432.524 

841.931 

1379.927 

24.707 

148.884 

400.108 

737.033 

1136.833 

24.715 

150.658 

405.525 

757.386 

1219.862 

24.912 

151.499 

407.119 

759.503 

1222.479 
 

 
40 

(S=138.56) 

1 

2 

3 

4 

5 

6.2109 

38.9260 

109.0050 

213.6110 

353.0764 

6.2109 

38.8947 

108.7795 

212.8027 

351.0056 

6.2028 

38.5475 

106.5160 

204.8697 

330.9243 

6.2044 

38.6736 

107.4695 

208.9977 

352.5038 

6.2540 

38.8988 

107.9194 

209.5795 

353.0551 
 

 
100 

(S=346.41) 

1 

2 

3 

4 

5 

0.99375 

6.22817 

17.44080 

34.17776 

56.49222 

0.99384 

6.22757 

17.43411 

34.15457 

56.43994 

0.99363 

6.21856 

17.37419 

33.93870 

55.87438 

0.99385 

6.23551 

17.50519 

34.53706 

59.35934 

1.00182 

6.27229 

17.57998 

34.63319 

59.43626 
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Table 4.4  Frequencies of an Isotropic Fixed-Fixed Beam 

L Mode E-B Rayleigh Timoshenko ν = 0 Full 
 

 
2 

(S=6.928) 

1 

2 

3 

4 

5 

8160.29 

22493.38 

44101.46 

72895.05 

108898.19 

7276.64 

16031.52 

25232.54 

34162.23 

42894.24 

3947.00 

7711.15 

- 

- 

- 

4067.61 

7951.97 

12665.35 

17869.87 

23039.24 

4156.69 

8016.46 

12740.30 

18071.29 

23231.10 
 

 
5 

(S=17.32) 

1 

2 

3 

4 

5 

1305.65 

3598.94 

7056.23 

11663.21 

17423.71 

1279.67 

3350.56 

6117.99 

9302.02 

12708.68 

1053.57 

2415.61 

4029.29 

5760.38 

7566.97 

1070.31 

2471.41 

4157.36 

5961.74 

7872.99 

1105.72 

2526.54 

4224.59 

6038.66 

7936.89 
 

 
10 

(S=34.64) 

1 

2 

3 

4 

5 

326.412 

899.735 

1764.059 

2915.802 

4355.928 

324.756 

882.988 

1695.419 

2727.330 

3943.480 

306.315 

785.788 

1421.532 

2160.254 

2968.401 

310.131 

798.092 

1449.363 

2212.983 

3067.753 

321.455 

823.077 

1483.411 

2254.271 

3117.107 
 

 
20 

(S=69.28) 

1 

2 

3 

4 

5 

81.603 

224.934 

441.015 

728.950 

1088.982 

81.500 

223.874 

436.508 

716.276 

1060.184 

80.250 

216.591 

413.359 

661.887 

954.204 

81.192 

219.501 

419.157 

674.313 

975.394 

84.220 

227.318 

430.819 

690.634 

995.855 
 

 
40 

(S=138.56) 

1 

2 

3 

4 

5 

20.4007 

56.2334 

110.2537 

182.2376 

272.2455 

20.3946 

56.1691 

109.9629 

181.4330 

270.3853 

20.3147 

55.6898 

108.3754 

177.5127 

262.3055 

20.5686 

56.4464 

109.8344 

180.7184 

267.3909 

21.3294 

58.5207 

113.0188 

185.5264 

273.5839 
 

 
100 

(S=346.41) 

1 

2 

3 

4 

5 

3.26412 

8.99735 

17.64059 

29.15802 

43.55928 

3.26401 

8.99609 

17.63206 

29.13788 

43.51023 

3.26195 

8.98364 

17.59028 

29.03299 

43.28975 

3.32304 

9.14956 

17.96247 

29.77728 

44.74848 

3.43547 

9.47477 

18.44485 

30.58208 

45.75155 
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Table 4.5  Frequencies of an Orthotropic Fixed-Fixed Beam 

L Mode E-B Rayleigh Timoshenko ν = 0 Full 
 

 
2 

(S=6.928) 

1 

2 

3 

4 

5 

15810.17 

43579.82 

85444.40 

141230.55 

210984.86 

14098.13 

31060.28 

48886.80 

66187.62 

83105.47 

4500.41 

8885.38 

- 

- 

- 

4649.87 

9192.75 

10574.52 

17038.85 

21824.63 

4661.04 

9211.47 

10683.07 

16722.03 

21772.46 
 

 
5 

(S=17.32) 

1 

2 

3 

4 

5 

2529.63 

6972.77 

13671.10 

22596.89 

33757.58 

2479.30 

6491.54 

11853.31 

18022.20 

24622.44 

1508.23 

3135.55 

5014.83 

6937.85 

8885.12 

1537.40 

3222.04 

5142.33 

7135.95 

9138.90 

1544.50 

3230.33 

5155.16 

7150.96 

9155.73 
 

 
10 

(S=34.64) 

1 

2 

3 

4 

5 

632.407 

1743.192 

3417.776 

5649.222 

8439.394 

629.200 

1710.746 

3284.789 

5284.067 

7640.297 

524.644 

1230.568 

2080.759 

3002.296 

3963.226 

531.315 

1253.115 

2135.417 

3089.447 

4120.143 

534.244 

1258.302 

2142.921 

3099.222 

4129.059 
 

 
20 

(S=69.28) 

1 

2 

3 

4 

5 

158.102 

435.798 

854.444 

1412.305 

2109.849 

157.902 

433.745 

845.713 

1387.750 

2054.054 

149.847 

389.357 

713.313 

1096.113 

1519.743 

151.556 

394.379 

725.179 

1119.157 

1564.651 

152.440 

396.684 

728.129 

1123.014 

1569.730 
 

 
40 

(S=138.56) 

1 

2 

3 

4 

5 

39.5254 

108.9495 

213.6110 

353.0764 

527.4621 

39.5134 

108.8248 

213.0477 

351.5174 

523.8582 

38.9782 

105.6627 

202.7912 

326.8051 

474.2981 

39.4260 

107.0223 

205.4340 

332.5416 

484.0115 

39.6587 

107.6105 

206.3256 

333.7862 

485.6946 
 

 
100 

(S=346.41) 

1 

2 

3 

4 

5 

6.32407 

17.43192 

34.17776 

56.49222 

84.39394 

6.32385 

17.42949 

34.16125 

56.45319 

84.29893 

6.30990 

17.34520 

33.87952 

55.74922 

82.82703 

6.39440 

17.59123 

34.36394 

56.79759 

84.53273 

6.43117 

17.68912 

34.51226 

57.01745 

84.82903 
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Table 4.6  Frequencies of an Isotropic Simply-Supported Beam 

L Mode E-B Rayleigh Timoshenko ν = 0 Full 
 

 
2 

(S=6.928) 

1 

2 

3 

4 

5 

3599.84 

14399.36 

32398.56 

57597.45 

89996.01 

3278.53 

10666.29 

19189.40 

27808.74 

36318.21 

2712.61 

7393.83 

12229.28 

17010.07 

21730.55 

2705.03 

7367.28 

12199.06 

16997.14 

21749.33 

2688.52 

7286.58 

12060.85 

16831.98 

21584.08 
 

 
5 

(S=17.32) 

1 

2 

3 

4 

5 

575.97 

2303.90 

5183.77 

9215.59 

14399.36 

566.73 

2165.80 

4553.32 

7459.20 

10666.29 

541.69 

1881.89 

3600.91 

5470.54 

7393.83 

541.23 

1877.67 

3589.39 

5450.81 

7367.28 

540.43 

1869.13 

3562.46 

5398.13 

7286.64 
 

 
10 

(S=34.64) 

1 

2 

3 

4 

5 

143.994 

575.974 

1295.943 

2303.898 

3599.840 

143.405 

566.727 

1250.487 

2165.797 

3278.826 

141.662 

541.687 

1142.155 

1881.892 

2712.610 

141.629 

541.232 

1140.365 

1877.666 

2705.026 

141.572 

540.432 

1137.004 

1869.127 

2688.526 
 

 
20 

(S=69.28) 

1 

2 

3 

4 

5 

35.998 

143.994 

323.986 

575.974 

899.960 

35.961 

143.405 

321.029 

566.728 

877.684 

35.849 

141.662 

312.605 

541.687 

820.892 

35.847 

141.629 

312.446 

541.232 

819.907 

35.843 

141.572 

312.174 

540.433 

818.118 
 

 
40 

(S=138.56) 

1 

2 

3 

4 

5 

8.9996 

35.9984 

80.9964 

143.9936 

224.9900 

8.9973 

35.9615 

80.8097 

143.4051 

223.5581 

8.9902 

35.8494 

80.2490 

141.6625 

219.3924 

8.9901 

35.8487 

80.2380 

141.6285 

219.3123 

8.9899 

35.8434 

80.2196 

141.5716 

219.1770 
 

 
100 

(S=346.41) 

1 

2 

3 

4 

5 

1.43994 

5.75974 

12.95943 

23.03898 

35.99840 

1.43987 

5.75880 

12.95463 

23.02383 

35.96145 

1.43970 

5.75590 

12.94001 

22.97776 

35.84935 

1.43969 

5.75585 

12.93972 

22.97684 

35.84712 

1.43969 

5.75575 

12.93924 

22.97532 

35.84344 
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Table 4.7  Frequencies of an Orthotropic Simply-Supported Beam 

L Mode E-B Rayleigh Timoshenko ν = 0 Full 
 

 
2 

(S=6.928) 

1 

2 

3 

4 

5 

6974.51 

27898.05 

62770.61 

111592.20 

174362.82 

6351.98 

20665.41 

37178.51 

53878.05 

70364.70 

3854.06 

8856.85 

13708.31 

18489.92 

21013.71 

3823.95 

8864.57 

10445.80 

16619.39 

20934.36 

3812.57 

8843.49 

10573.31 

16102.21 

21035.53 
 

 
5 

(S=17.32) 

1 

2 

3 

4 

5 

1115.92 

4463.69 

10043.30 

17854.75 

27898.05 

1098.01 

4196.12 

8821.84 

14451.82 

20665.41 

950.72 

2840.57 

4869.36 

6879.00 

8856.85 

946.36 

2817.92 

4836.29 

6856.22 

8864.57 

945.06 

2810.20 

4821.75 

6837.33 

8843.53 
 

 
10 

(S=34.64) 

1 

2 

3 

4 

5 

278.981 

1115.922 

2510.825 

4463.688 

6974.513 

277.840 

1098.007 

2422.757 

4196.125 

6351.982 

266.498 

950.722 

1852.608 

2840.571 

3854.063 

266.083 

946.358 

1839.732 

2817.916 

3823.954 

265.964 

945.059 

1835.667 

2810.202 

3812.579 
 

 
20 

(S=69.28) 

1 

2 

3 

4 

5 

69.745 

278.981 

627.706 

1115.922 

1743.628 

69.674 

277.840 

621.978 

1098.007 

1700.470 

68.920 

266.498 

569.658 

950.722 

1384.761 

68.891 

266.083 

567.917 

946.358 

1376.555 

68.882 

265.964 

567.410 

945.059 

1374.045 
 

 
40 

(S=138.56) 

1 

2 

3 

4 

5 

17.4363 

69.7451 

156.9265 

278.9805 

435.9070 

17.4318 

69.6735 

156.5648 

277.8403 

433.1328 

17.3839 

68.9199 

152.8476 

266.4975 

406.6094 

17.3820 

68.8906 

152.7067 

266.0826 

405.6809 

17.3815 

68.8823 

152.6667 

265.9642 

405.4136 
 

 
100 

(S=346.41) 

1 

2 

3 

4 

5 

2.78981 

11.15922 

25.10825 

44.63688 

69.74513 

2.78969 

11.15739 

25.09896 

44.60754 

69.67353 

2.78846 

11.13774 

24.99995 

44.29649 

68.91992 

2.78841 

11.13696 

24.99604 

44.28428 

68.89057 

2.78839 

11.13673 

24.99492 

44.28081 

68.88225 
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4.3.1  Effects of Slenderness 
 

From the results of this study, it is clear that the slenderness ratio of a beam has a significant effect on the 

accuracy of frequency calculations for two of the common beam theories. As the slenderness ratio 

decreases to a point where the solid is closer to a cube than a typical beam, the error between the elasticity 

solution and both the Euler-Bernoulli and Rayleigh results increases exponentially. For the Timoshenko 

beam model, the length of a beam has a minimal effect on the percent error from the full elasticity theory. 

This is especially true for the fundamental mode of an isotropic beam. The support case for a beam affects 

the level of accuracy for each beam theory as the slenderness ratio changes, but these general trends are 

consistent throughout. 

 

For the cantilever beam and fixed-fixed beam scenarios, all three beam theories approach a similar error 

value as the slenderness increases.  The existence of even one fixed support for a beam leads to noticeable 

errors in frequency for even very slender beams. This is most likely due to neglecting the Poisson effect and 

will be discussed in Section 4.3.3. Although the frequency results from the beam theories do not approach 

the full elasticity solution, they still demonstrate the slenderness trends discussed above. As the slenderness 

value decreases, the results for both the Euler-Bernoulli and Rayleigh models begin to deviate from the 

asymptotic error percentage at an exponential rate, as can be seen in Figures 4.1 and 4.3. The error values 

from the Rayleigh beam model are less than those from Euler-Bernoulli model calculations, as was 

expected, but the slenderness ratio of a beam still has a meaningful influence on the accuracy of the 

Rayleigh model. This effect is significantly greater for higher modes of vibration for both beam theories. 

While the errors for the fundamental mode of a 1x1x2 beam are 11.6% and 6.5% for Euler-Bernoulli and 

Rayleigh, respectively, these errors grow to 444% and 133% for the fifth mode of vibration in a 

cantilevered beam. The errors for a fixed-fixed beam are even larger for higher modes of vibration. The 

error values for the fifth mode are shown in Figures 4.2 and 4.4. The minute effect that slenderness has 

upon the Timoshenko frequency results can also be seen in these figures. While the other two beam theories 

diverge exponentially as the beam length falls below 10, the Timoshenko model remains at a very similar 

error value throughout the entire range of slenderness ratios considered. The error increases slightly more 

for very stout beams and higher modes of vibration, but this increases is small in comparison with the other 

two theories. 

 

The results from a simply supported beam also follow similar trends. The main difference for this support 

case is that the frequency values from the three beam theories actually approach the full elasticity solutions, 

rather than a common error value. The error still increases significantly for the Euler-Bernoulli and 

Rayleigh beam theories as a beam becomes less slender, while the influence is minimal for the Timoshenko 

model. Slenderness is also still a greater factor for higher modes of vibration than for the fundamental 

mode. The error values for a simply supported beam as the beam length varies are shown in Figures 4.5 and 

4.6. 



 

56 
 

P
e

rc
e

n
t 
E

rr
o

r 
fr

o
m

 F
u

ll 
E

la
s
ti
c
it
y
 S

o
lu

ti
o

n
, 
%

 
P

e
rc

e
n
t 
E

rr
o

r 
fr

o
m

 F
u

ll 
E

la
s
ti
c
it
y
 S

o
lu

ti
o

n
, 
%

 

12 

Euler−Bernoulli 

10 Rayleigh 

Timoshenko 

8 

 
6 

 
4 

 
2 

 
0 

 
−2 

 
−4    

 
−6 

0 10 20 30 40 50 60 70 80 90 100 

Beam Length 

 
 

Figure 4.1  Frequency Error for the First Mode of a Cantilevered Beam 
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Figure 4.2  Frequency Error for the Fifth Mode of a Cantilevered Beam 
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Figure 4.3  Frequency Error for the First Mode of a Fixed-Fixed Beam 
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Figure 4.4  Frequency Error for the Fifth Mode of a Fixed-Fixed Beam 
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Figure 4.5  Frequency Error for the First Mode of a Simply-Supported Beam 
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Figure 4.6  Frequency Error for the Fifth Mode of a Simply-Supported Beam 
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All these results follow the expected trends. As the slenderness of a beam decreases, the displacement pattern is 

known to deviate from the linear model that each of the three beam theories assume. For example, in the 

extreme case where the beam length approaches the width or becomes less than the width, the deformation 

pattern becomes more similar to that of a plate than a beam. It is therefore clear that the one-dimensional 

displacement patterns of the common beam theories cannot be applied to very short and thick beams. In this 

study, three-dimensional displacement patterns were determined using the Ritz-based approximation program. 

It was found that obvious warping of the beam surface through the width and height begins to occur for very 

stocky beams. When a beam is very slender, the displacement is dominant in only one dimension as the three 

common beam theories assume, but this deteriorates rapidly as the slenderness decreases. The first five three-

dimensional mode shapes were plotted for both a very slender beam (1x1x40) and a very stout beam (1x1x2) 

for each of the support cases. Figures 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12 show these mode shapes and how the 

deformation behavior drastically changes for non-slender beams. You can clearly see how the deformation 

pattern deviates from beam theory expectations in Figure 4.8, where the cross-sectional plane is no longer plane 

throughout displacement; this is especially noticeable on the free face of the fifth mode shape. In the fourth and 

fifth mode shape for both the fixed-fixed and simply supported cases, the Poisson effect begins to have a 

significant influence for very short beams. In these plots, obvious warping through the width of the beam 

occurs due to the shrinking and expansion influences of the Poisson ratio.  The displacement patterns in these 

cases can no longer be accurately modeled through a one-dimensional plot of the centerline since the 

deformation of the outer surfaces is significantly different than what occurs at the centerline of the beam. With 

the very slender beams, the deformation follows typical beam theory expectations with the entire cross section 

of the beam moving essentially as one. In very slender beam cases, it is therefore acceptable to use a one 

dimensional centerline displacement to model beam vibrations. Three dimensional mode shapes are necessary 

though for low slenderness ratios to capture the accurate displacements. 

 

An unexpected result did arise when creating the three-dimensional modal deformation plots. For most beams, 

the lower modes of vibrational are always flexural, but it was found that for very non-slender beams this was 

not the case. When determining the mode shapes for the 1x1x40 beam, the lowest five modal frequencies were 

clearly flexural modes and matched exactly the expected displacement patterns.  For the very short beam case, 

the lowest three modes followed flexural displacements for all three support conditions, but the fourth and fifth 

lowest frequencies corresponded to very different deformation types.  For the fixed-fixed case, the fifth flexural 

mode did not appear until the 14th lowest mode of vibration.   This finding provides another strong reason for 

more accurate frequency and mode shape calculations  when dealing with non-slender beams since non-flexural 

modes of vibration may become dominant far earlier than anticipated. 

 

If the only factor affecting the accuracy of frequency results were slenderness, it would be clear that the 

Timoshenko model provides an acceptable approximation for frequencies. This model presents a significant 

improvement over either of the other two beam models when it comes to the loss of accuracy with less slender 

beams. The Rayleigh model gives improved results in comparison to Euler-Bernoulli, but the correction is 

minor compared to that of the Timoshenko model. The slenderness ratio of a beam is not the only element 

affecting the frequency results, though, so the conclusion that the Timoshenko model is adequate cannot be 

made. The material properties and the Poisson effect also alter the results as will be discussed in the following 

paragraphs. 
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4.3.2 Effects of Anisotropy 

 

The slenderness ratio of a beam has arguably the greatest influence on the accuracy of frequency results, but the 

results of this study demonstrate that anisotropic material properties can intensify this effect. Since the three 

basic theories assume that a beam is composed of isotropic material, the error in frequency results increases 

significantly when they are applied to an orthotropic material. This is especially true for the Euler-Bernoulli and 

Rayleigh beam theories. Figures 4.13, 4.14, and 4.15 display this trend. The accuracy of frequency values for 

the orthotropic material, graphite-magnesium, decreases even more rapidly than for steel as the slenderness 

decreases. For example, the error is more than four times greater for the orthotropic fixed-fixed beam than the 

isotropic case. The error increase for an anisotropic beam becomes insignificant for very slender beams, 

displaying that the slenderness ratio provides the dominant influence on frequency results. Anisotropic material 

properties simply exacerbate the loss of accuracy at low slenderness ratios. 

 

A result from this study, which was unexpected, comes from the Timoshenko beam model. Surprisingly, the 

Timoshenko model was exceptionally adaptable to the orthotropic material used. It is unclear whether this 

outcome is unique to graphite-magnesium or if the Timoshenko beam theory would perform well for any 

orthotropic or anisotropic material. More calculations would need to be completed with a larger variety of 

materials to answer that question. For the materials considered in this study, though, the frequency errors were 

very similar for both the isotropic and orthotropic material, as can be noted from Figures 4.13, 4.14, and 4.15. 

The fact that the Timoshenko model could accommodate an orthotropic material may be due to the influence of 

the shear factor. As discussed in Section 3, the shear coefficient for the orthotropic material was calculated 

through a number of equations that took the anisotropic material properties into account. Neither of the other 

two beam theories provide a means to consider anything other than isotropic properties, which may be the 

reason for the significant loss of accuracy when applied to an orthotropic beam. 
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Figure 4.7  First Five Mode Shapes for a 1x1x40 

 Isotropic Fixed-Free Beam 
Figure  4.8 First Five Mode Shapes for a 1x1x2 

 Isotropic Fixed-Free Beam 
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Figure 4.9  First Five Mode Shapes for a 1x1x40 

 Isotropic Fixed-Fixed Beam 

Figure 4.10  First Five Mode Shapes for a 1x1x2 

 Isotropic Fixed-Fixed Beam
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Figure 4.11  First  Five  Mode Shapes  for a 1x1x40 

 Isotropic Simply-Supported Beam 

Figure 4.12   First  Five  Mode Shapes  for  a 1x1x2 

 Isotropic Simply-Supported Beam 
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Figure 4.13  Error Comparison Between Isotropic and Orthotropic Materials for a Cantilevered Beam 
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Figure 4.14  Error Comparison Between Isotropic and Orthotropic Materials for a Fixed-Fixed Beam 
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Figure 4.15 Error Comparison Between Isotropic and Orthotropic Materials for a Simply Supported Beam 

 

The error increase for both the Euler-Bernoulli and Rayleigh beam theories is consistent throughout the 

different support conditions investigated for this study. The percent by which the frequency error increases 

varies slightly for the three cases, but in general the trend is consistent. For the Euler-Bernoulli and 

Rayleigh beam theories, the effect of an anisotropic material significantly amplifies the influence of low 

slenderness upon the accuracy of frequency results. For the Timoshenko model, the shear coefficient allows 

for the inclusion of anisotropic properties and thus provides similar results to isotropic beams for all three 

support cases.  If the impacts of slenderness and anisotropy were the only considerations, it seems as if the 

Timoshenko model would be a reasonable approximation of frequency results for even very stout 

orthotropic beams. These two effects cannot be isolated though, and all three models result in significant 

error values for all slenderness values if at least one of the beam supports is fixed. The primary cause for 

this accuracy problem is most likely due to neglecting the Poisson effect, which will be discussed in the 

next section. 
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4.3.3  Effects of Poisson Ratio 

 
The most unexpected result from this vibrational mechanics study is the significant difference between the 

Ritz-based elasticity method and the three beam theories for even very slender beams when at least one 

support in a beam is fixed. When these large errors were discovered, the suggested cause was the 

assumption of zero Poisson ratio in the typical beam theories. When considering a three-dimensional 

model, a perfectly fixed support completely restricts the Poisson effect. For example, in a cantilevered 

beam, the largest forces would exist at the fixed support and thus, the influence of the Poisson effect would 

cause the beam to shrink or expand through the width to counteract the large axial compression and tension 

forces. A perfectly fixed end does not allow this though, so the displacements and forces cannot act as is 

expected by typical beam theories. With a hinged or free support, there is no restriction of the Poisson 

effect and the beam is free to displace and vibrate as expected without any unusual effects. Therefore, 

ignoring the Poisson effect in a beam with only free or hinged supports would have minimal effect on the 

accuracy of the frequency results. In order to investigate this theory, the more accurate Ritz-based elasticity 

program was used to determine frequency results with  both the normal material properties listed in Table 

4.1 as well as elastic stiffness values found using ν = 0. This allowed for the influence of the Poisson effect 

to be isolated from the other factors that cause errors in the typical beam theories. 

 

The results of this investigation show that a consistent error exists between the models with and without the 

Poisson effect that is independent of beam slenderness. This is displayed in Figure 4.16, where the error in 

the fundamental mode is near 4.7% for a cantilevered beam, 3.4% for a fixed-fixed beam, and 0% for a 

simply supported beam. The percent difference does vary somewhat with the length of the beam, but the 

change is minimal and does not seem to follow a persistent trend. The result for the simply-supported beam 

case followed expectations and showed that neglecting the Poisson effect has a minimal influence. This was 

also the result for a free-free beam, which was investigated prior to this study. The error results were 

somewhat surprising for the fixed-free and fixed-fixed support conditions. Both of these cases did show a 

considerable error for all slenderness values, which was predicted, but the expected result was that the error 

would be higher for the fixed-fixed case than for the cantilevered beam. It seemed that the influence of the 

Poisson effect would increase with more restriction at the supports, but this was not the case. The reason for 

this is unclear and more study would be required to understand why the error is greater for the fixed-free 

case than for a fixed-fixed beam. 
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Figure 4.16  Influence of Poisson Effect for Varying Slenderness Ratios 

 
Although the impact of neglecting the Poisson effect seems to be independent of slenderness, the error is 

related to the mode of vibration. Unexpectedly, the error decreased for higher modes of vibration for both 

cases including a fixed-support. It is uncertain why this is the case, and more investigation is necessary to 

determine the reason behind this pattern. For the simply supported case, the opposite pattern occurs. The 

influence of the Poisson effect is still minor for all modes of vibration, but the error does tend to increase 

for higher modes of vibration. These results are shown for a beam with a slenderness ratio of 69 in Figure 

4.17. 

 

The frequency error due to the Poisson ratio also appears to be connected with the material properties of a 

beam when a fixed support is present. The percent difference between the zero Poisson ratio and full 

elasticity results is far less for the orthotropic material studied than for the isotropic. The error is 

approximately six times greater for a steel beam than for a beam of graphite-magnesium if there is a fixed 

support.  This result may be unique to these two materials, so other materials with both orthotropic and 

anisotropic properties would need to be studied to determine if the error is always less for an anisotropic 

solid. The results also show that this error difference does not exist for the simply supported beam. For this 

support case, the error values with or without the Poisson effect are virtually identical. 
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Figure 4.17  Influence of Poisson Effect for Varying Modes of Vibration 
 
 

4.3.4  Conclusions 
 

From the results discussed, a number of conclusions can be made. As previously stated, these results are 

only known for the geometry, materials, and constitutive laws that were used in the analysis. The 

determined findings are listed below. 

 

1. For beams with at least one fixed support, the Timoshenko beam theory as well as an elasticity 

theory with zero Poisson ratio underestimate the frequency results. For very slender beams, the 

Euler-Bernoulli and Rayleigh beam theories also underestimate resonant frequencies, which 

contradicts expectations. 
 

2. For a simply supported beam, all three beam theories and the zero Poisson condition 

overestimate frequency results. This occurs for all slenderness ratios and modes of vibration 

considered. 
 

3. The slenderness ratio has a significant impact on the frequency accuracy for both the Euler-

Bernoulli and Rayleigh beam theories. As the slenderness decreases, the error increases 

rapidly.  This problem worsens for higher modes of vibration and anisotropic materials. 
 

4. The resonant mode shapes for a non-slender beam deviate from one-dimensional beam theory 

predictions with significant warping through the thickness and height. 

 

5. Neither slenderness nor anisotropy have a meaningful influence upon the frequency accuracy 

for the Timoshenko beam model. 
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6. None of the three studied beam theories provide acceptable results when a fixed support exists.  

In these cases, neglecting the Poisson effect leads to significant errors (more than 3%) for even 

extremely slender beams. When analyzing beams with fixed support conditions, more complex 

analysis, such as the full elasticity approximation used in this study, are necessary. 
 

7. The influence of neglecting the Poisson effect decreases for higher modes of vibration with a 

cantilevered or fixed-fixed beam. 
 

8. For beams with only hinged or free supports, the assumption of zero Poisson ratio has a 

minimal effect on the frequency results. This is true for both orthotropic and isotropic materials 

as well as all of the modes of vibration and slenderness ratios considered in this study. 
 

The main purpose of this study was to determine when the typical beam theories are no longer acceptable. 

To summarize the answer to this investigation, all three theories are inadequate for beams with at least one 

fixed support regardless of slenderness or material type. For a simply supported beam, the Timoshenko 

beam model performs better than expected. The accuracy of frequency results only becomes poor for very 

low slenderness values combined with high modes of vibration.  The Euler-Bernoulli and Rayleigh beam 

theories deteriorate in accuracy earlier than predicted. The common standard is that Euler-Bernoulli is 

acceptable for slenderness ratios greater than 100, but the results of this study contradict this. Even with a 

slenderness ratio of 138, the error for higher modes and orthotropic materials is near 2% for Euler-Bernoulli 

and above 

1% for Rayleigh. The Timoshenko beam model is the clear choice for a simply supported beam unless the 

slenderness ratio is extremely high. For fixed-free or fixed-fixed beams, more complex analysis is required 

to calculate accurate resonant frequencies and mode shapes. 

 

4.4    Method for Investigating MEMS Sensor 
 

The calculation work performed for a proposed new MEMS sensor determined accurate estimates of 

resonant frequencies for certain modes of vibration. This device is planned to be an acoustic resonator with 

possible applications in molecular detection, strain sensing in civil infrastructure, and electronic frequency 

control. The primary sensing element of this device is a fixed-fixed bridge of silicon crystal with a thin film 

of gold. An illustration of the device, cross-sectioned through the middle, is provided in Figure 4.18. As the 

sensor experiences strain or mass loading from certain molecules, the resonant frequencies of this bridge 

will shift and be detected. For the application in structural health monitoring, the vision is that dynamic 

strains from both large-scale events, such as earthquakes and small-scale vibrations from acoustic 

emissions, could be detected and output. This device could also possibly be operated wirelessly, where the 

signal would be directly transmitted to a processing node. This would greatly reduce the complexity and 

cost over other available sensor systems. 
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Figure 4.18  Illustration  of MEMS Sensor Configuration Cross-Sectioned Through the Mid-Length 

 

To proceed further with the development of this device, the inventor, Dr. Ward Johnson, will determine the 

exact resonant frequency range of the fixed-fixed bridge experimentally.  Before this is feasible, more 

accurate estimates of these frequencies are needed they can be found experimentally. For the purpose of 

these estimates, the thin gold film will be neglected and only the properties of silicon will be input.  Due to 

the results obtained from the vibration study discussed previously, the Ritz-based approximation program 

was utilized to calculate the resonant frequencies and mode shapes, since a higher error was found in all 

three beam theories when a fixed support was involved. 

 

A few different bridge dimensions were analyzed in this work, with the length of the bridge varying. For all 

the cases, the width of the bridge is 69 microns and the thickness was set to 4.9 microns. Three different 

lengths were considered, since the best size in this dimension has not yet been decided. The three lengths 

studied were 400 microns, 600 microns, and 800 microns. The elastic constants and density used for the 

silicon material were determined by McSkimin and others and are provided in Table 4.8 [47]. These 

material properties and dimensions were input into the already created Ritz-based approximation program 

from the vibration study to determine resonant frequencies. 
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Table 4.8  Material Properties for Silicon 
Constant Value 

C11 , GPa 167.4 
C44 , GPa 65.23 
C12 , GPa 79.57 
Density, ρ, kg/m3 2331 
 

The modes of vibration, which are of particular interest for the operation of the device, are the lateral- 

flexural modes. The frequencies of lateral modes are more attractive because they experience less damping, 

which would lead to greater frequency resolution and sensitivity. The damping is lower for these modes 

than for transverse modes because less air or liquid is displaced through the movement, and thus less 

energy losses [48]. The Ritz-based approximation program was easily able to isolate the lateral-flexural 

modes of the bridge by simply selecting proper axes orientation. The computing program uses set 

displacement patterns for each axis, which are based upon the assumption of vertical or transverse 

displacement. By simply rotating the dimensions of the silicon beam so that the width dimension was 

vertical, the lateral modes were found. The determined resonant frequencies and mode shapes are discussed 

in the following section. 

 

The developer of this device is also interested in determining the frequencies for the through-thickness 

shear modes for the silicon bridge. These vibration modes would disturb less air than the lateral flexural 

modes and would thus experience less damping and provide even greater frequency resolution.  A simple 

diagram of the cross section deformation for this type of vibration is displayed in Figure 4.19. The 

calculations for the resonant frequencies of these mode types have not yet been completed. All other 

calculation work and investigations for this study focus on flexural vibrations, which have been studied in 

more depth, and thus, switching to shear mode calculations is a greater challenge than determining the 

lateral flexural modes. The hope is that these calculations can be completed soon and provide another 

option for the development of this new sensor. 

 

4.5  Results from MEMS Sensor Investigation 
 

Through the use of the Ritz-based approximation program for a fixed-fixed beam, the resonant frequencies 

for the first five lateral-flexural modes were determined. The values for these results are provided in Table 

4.9. The fundamental lateral-flexural mode is of greatest interest for the development of the device, but 

higher modes were also calculated in case the need arose for these frequency estimations. 
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Figure 4.19  Illustration of Cross Section Deformation for Through-Thickness Shear Mode 
 
  
Table 4.9  First Five Lateral-Flexural Mode Frequencies 

for MEMS Bridge 
 

Length (microns) Mode Frequency (rad/s) 
 

 
400 

1 

2 

3 

4 

5 

18225324 

44972102 

78724660 

116570326 

158118357 
 

 
600 

1 

2 

3 

4 

5 

8548456 

22215588 

40562569 

62399670 

86980150 
 

 
800 

1 

2 

3 

4 

5 

4908432 

13058480 

24389408 

38414047 

54548071 
 
 

 

 
 

(a) 400 microns  (b) 600 microns  (c) 800 microns 

 
Figure 4.20  Lateral-Flexural Vibration Modes for MEMS Bridge 
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Three-dimensional mode shapes for the fundamental lateral-flexural modes were plotted for each of the 

three lengths of interest. This was done to ensure that the frequencies calculated were for the correct 

vibrational modes of interest. These mode shapes are shown in Figure 4.5. The calculated mode shapes 

followed expectations and were confirmed to match the vibrational modes of interest for the MEMS sensor. 

With this information, the hope is that exact resonant frequencies can more easily be determined 

experimentally from the accurate estimations. This will advance the development and testing process for 

the device, which could potentially provide significant applications and advantages in cell sensing and 

structural health monitoring. 
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5. CONCLUSIONS 
 
5.1  Summary of Work and Results 
 

The bridges and buildings that the nation depends upon daily to provide safe and efficient usage, 

continually deteriorate from harsh environmental conditions and operational loads. Many of these structures 

have been in service for decades and are at risk of significant damage and deficiency. The field of structural 

health monitoring has arisen to attempt to prevent catastrophic failures and prioritize the immense amount 

of repair and maintenance that is required through persistent monitoring of the strength and integrity of a 

structure. Although many methods and technologies have been proposed and developed for the practice of 

structural health monitoring, a need still exists for further improvements to increase the applicability and 

affordability. 

 

The research for this study aimed to contribute to possible advancements in the monitoring of civil 

infrastructure through three main goals. The first of these was to provide a thorough review of the concepts, 

methods, and technologies currently in use for structural health monitoring. This review presented the 

objectives of this practice and explained the theory behind multiple methods that have been established to 

fulfill these goals. Throughout these explanations, the benefits and drawbacks of each method were 

discussed and compared. This survey also offered the details of numerous sensor options that are available 

to obtain the data required to perform the analysis component of structural health monitoring. The concepts 

utilized for each of these technologies, their application capabilities, advantages, and disadvantages, were 

all presented. The motivation behind this overall review was to provide a general understanding of the field 

that could better direct further research. The primary motivation for this was to aid calculations included in 

this report, but it is hoped it will guide others in their investigations and experiments as well. 

 

The second objective of this paper was to perform an in-depth study of vibrational beam mechanics theories 

to determine when and if their accuracy is unacceptable due to three key assumptions employed in all of 

them. This investigation was completed to ensure acceptable results could be obtained for calculations of a 

possible new structural health monitoring sensor. Three of the most common beam theories were 

considered: Euler-Bernoulli, Rayleigh, and Timoshenko. The Euler-Bernoulli model is the simplest option 

since it ignores the influences of the rotational inertia and shear forces in a beams displacement. The 

Rayleigh theory adds in rotary inertia, while Timoshenko includes both of these effects. All three theories 

assume the deformation occurs primarily in one dimension, the beam is relatively slender, the material is 

isotropic, and the Poisson effect is negligible. By employing an accurate Ritz-based elasticity 

approximation, each of these assumptions was tested to determine how it affects the accuracy of frequency 

and mode shape findings. Varying support conditions, beam lengths, and material properties were used in 

the analysis to better isolate each of the effects of interest. The conclusions of this investigation were 

compelling. A list of the key results found is provided below. 

 When the slenderness ratio falls below 50, the errors in frequency results increases rapidly 

for both the Euler-Bernoulli and Rayleigh beam models, with errors up to 90% in one case. 

 For higher modes of vibration and a slenderness ratio of 138, the frequency errors are 

above 2% for Euler-Bernoulli and Rayleigh, contradicting the assumption that these 

theories are adequate for beams with s > 100. This loss of accuracy for higher modes was 

consistent for all three beam cases. 

 When the Euler-Bernoulli or Rayleigh theories are applied to an orthotropic material, the 

frequency errors for s < 50 more than double in comparison with the errors for an isotropic 

material. This trend was found for all three support cases. 
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 For all three support cases studied, the frequency errors for the Timoshenko model are not 

affected by very low slenderness or anisotropic properties. 

 Due to neglecting the Poisson effect, none of the three beam theories are acceptable for 

beams with a fixed support since the frequency errors are 4% or greater for the entire range 

of slenderness values studied. 

 When the influence of the Poisson ratio was isolated, it was found that neglecting this effect 

leads to frequency errors greater than 3% for beams with s > 300 when a fixed support 

exists. 

 For the simply-supported case, the Poisson effect has a minimal influence, and it was found 

that the 

Timoshenko model gives excellent results for all slenderness ratios considered. 
 

In summary, it was found that a more accurate, three-dimensional analysis should be utilized for beams 

involving a fixed support, but when this is not present, the Timoshenko model provides excellent results for 

all slenderness values, materials, and vibrational modes investigated. 

 

The final and motivating goal of this work was to determine accurate estimates of resonant frequencies for 

the sensing component of a proposed MEMS sensor. This sensing component consists of a fixed-fixed, thin 

silicon bridge. Because of the support conditions of this bridge, the highly accurate three-dimensional 

elasticity solution used in the vibrational study was employed for the calculations. With this option 

available, accurate frequency estimates were obtained for the lateral-flexural modes of the bridge, which 

would aid in the experimental testing and development of this device. 

 

5.2 Suggestions for Continued Research 
 

Numerous opportunities exist for further research stemming from the work presented in this report. These 

research possibilities develop from two of the main goals of this study. First, there are multiple additional 

aspects that could be investigated to expand upon the vibrational mechanics study in this paper. Another 

assumption of typical beam theories is that the cross section of the beam is symmetrical, and it would be 

interesting to investigate beam dimensions that do not follow this parameter. Varying beam dimensions, in 

general, could be studied to better understand even the effects examined in this study. It is unclear if the 

existence of a fixed support would have as significant of an influence for non-square cross sections, hollow 

beams, and more, which could be of interest for multiple applications. Another option for further study 

would be to include a greater variety of material properties to further understand the effect of anisotropy on 

vibrational frequencies and mode shapes. More orthotropic materials could be included, as well as entirely 

anisotropic materials. Since the inclusion of a fixed support clearly had a meaningful impact on the action 

of a beam, a deeper investigation into the deformations, strains, and forces experienced at a fully fixed 

support could provide meaningful information to better understand this anomaly. 

 

Another direction that additional research could go from the vibrational study presented would be to 

employ the more accurate three-dimensional elasticity approximation to applications that involve modal 

analysis and fixed supports.  For example, there could be interest in how differently a structural frame 

modeled with fixed connections responds to modal analysis when the Poisson effect is included. Also, 

many MEMS devices that have been developed involve the response of a cantilevered beam, and the 

inclusion of the Poisson effect in their analysis could affect the results. A multitude of similar scenarios 

exist where a beam with a fixed support is involved, and which could benefit from applying the results 

found in this report. 
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Research possibilities could also follow the work done for the proposed MEMS sensor. Some research will 

likely occur by the developers to experimentally determine the actual resonant frequencies of the device 

and to decide which length for the silicon beam would provide the best operation. If the device has 

substantial potential, further work would be required to determine its accuracy in actually monitoring civil 

infrastructure. There is also potential for applicability in biomechanical fields such as cancer cell detection, 

and more research, testing, and development could also pursue this opportunity.  In general, there are 

countless directions that new investigations could follow from this report and the hope is that the work 

presented here will provide a useful base from which to begin. 
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